THERMAL REDUCTION OF NO BY NH₃: KINETIC MODELING OF THE NH₂ + NO PRODUCT BRANCHING RATIO

M. J. HALBGEWACHS, E. W. G. DIAU, A. M. MEBEL AND M. C. LIN

Department of Chemistry Emory University Atlanta, GA 30322, USA

C. F. MELIUS

Combustion Research Facility Sandia National Laboratories Livermore, CA 94550, USA

The product-branching ratio for the reaction NH₂ + NO \rightarrow HN₂ + OH (1) and N₂ + H₂O (2) has been determined in the temperature range of 950–1200 K by pyrolysis of Ar-diluted NH₃ + NO mixtures and at 1173 and 1200 K by pyrolysis of Ar-diluted NH₃-NO-CO mixtures. Analysis of the pyrolyzed and unpyrolyzed mixtures was carried out by the FTIR spectrometric method. Kinetic modeling of the decay rates of NH₃ and NO and the production rate of CO₂ by varying the branching ratio, $\alpha_1 = k_1/(k_1 + k_2)$, and keeping the known total rate constant ($k_t = k_1 + k_2 = 9.6 \times 10^{14} T^{-0.85} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$) unchanged at each temperature allows determination of the value of α_1 with good reproducibility. Kinetic modeling of α_1 , using previously measured H₂O formation data [28] from the NH₃ + NO reaction in the temperature range of 1123–1273 K was also carried out. The branching ratio was found to increase rapidly from 0.27 at 950 K to 0.58 at 1273 K, which is fully consistent with the sharply rising trend recently reported from NH₃-NO flame studies, in which $\alpha_1 \approx 0.5$ at 1500 K and rose to 0.9 at 2000 K. These new findings cast doubt on the much lower values, $\alpha_1 \leq 0.17$ at $T \leq 1173$ K, obtained by laser kinetic measurements.

Introduction

The reaction of NH_2 with NO has been shown to greatly affect the overall NO_x -reduction efficiency of NH_3 and the burning velocity of the NH_3 -NO flame [1–6]. The reaction takes place primarily by the following two product channels [1–15]:

$$\mathrm{NH}_{2} + \mathrm{NO} \to \mathrm{HN}_{2} + \mathrm{OH} \tag{1}$$

$$\rightarrow N_2 + H_2O$$
 (2)

The relative importance of these reaction paths, as measured by the branching ratio $\alpha_1 = k_1/(k_1 + k_2)$, strongly influences the overall kinetics of the NH₃-NO system. The thermal-neutral reaction, Eq. (1), generates two key chain carriers, H and OH, because HN₂ is unstable under combustion conditions. However, reaction (2), producing N₂ and H₂O, is an exothermic chain-termination step that releases as much as 120 kcal mol⁻¹ energy. Therefore, these two reactions are highly competitive. Reaction (1) enhances the efficiency of NH₃ for NO_x reduction and the overall NH₃ + NO reaction rate, whereas reaction (2) reduces the efficiency and reaction rate.

On the basis of the results of recent kinetic modeling on the structure of a quasi-equimolar NH₃-NO flat flame by Vandooren et al. [5] and on the burning velocity data of Andrew and Gray [16] by Brown and Smith, [6] the branching ratio for reaction (1), α_1 , has been determined to be ≥ 0.5 above 1500 K. This value is significantly higher than that deduced from laser kinetic measurements, most notably by Wolfrum and co-workers [11] and by Stephens et al. [12], who found α_1 to be ≤ 0.2 at $T \leq 1200$ K. In a recent kinetic modeling of the NH3 de-NOx process by Glarborg et al. [15], the temperature-dependent expression, $\alpha_1 = 2.2 \times 10^{-3} T^{0.70}$, was employed by fitting $\alpha_1 = 0.11$ at 300 K and 0.3 at 1150 K. A large gap exists between the low-temperature (300-1000 K kinetic data and the results of high-temperature (1500-2000 K) flame studies. The objective of the present work is to bridge the gap by presenting kinetic data in the temperature range of 950-1200 K using the pyrolysis-FTIR spectrometric method [17-19].

Experimental

The pyrolysis of two mixtures, one of NH_3 and NO, the other of NH_3 , NO, and CO, both diluted with Ar, was carried out in a quartz reactor of volume

FIG. 1. Typical concentration versus time profile of NO (A) and NH₃ (B) for the reaction conditions and the α_1 values shown in Table 2 (Nos. 4 and 9, respectively), with kinetically modeled results shown by a solid curve, a short dash curve, and a long dash curve representing α_1 , α_1 + 0.1, and α_1 – 0.1, respectively.

270 cm³ with a surface-to-volume ratio of 0.748 cm⁻¹. The reactor was heated by a double-walled cylindrical oven. Concentrations of the NH₃ and NO mixtures ranged from 0.6 to 3.7% NO and 0.3 to 0.9% NH₃. The concentrations of the NH₃, NO, and CO mixtures ranged from 2.0 to 2.7% NO, 0.8 to 1.0% NH₃, and 4.9 to 6.3% CO. The reactor was heated to temperatures ranging from 950 to 1200 \pm 1 K for the NH₃ and NO mixtures and at 1173 and 1200 \pm 1 K for the NH₃, NO, and CO mixtures.

Unpyrolyzed and pyrolyzed samples were analyzed by a Mattson Instrument Polaris Fourier Transform Infrared (FTIR) spectrometer with a resolution of 2 cm⁻¹. Concentrations of NO, NH₃, and CO₂ were determined by calibration curves of concentration versus absorbance at 1900 cm⁻¹, 993 cm⁻¹, and 668 cm⁻¹, respectively. The calibration curves were plotted using data from samples of various appropriate concentration combinations of NO, NH₃, CO, and CO₂ that were expanded into the FTIR absorption cell at pressures ranging from 150 to 200 torr, corresponding to the pressures at which the pyrolyzed samples were analyzed. The curves were of good quality with little scatter of the data points, and the estimated error in our concentration measurements is smaller than 2–3%.

NH₃ was purified by degassing at 77 K and distillation at 228 K, attained by ethanol cooled with liguid N₂. NO, which often contains NO₂ impurities, was purified by passing the gas through a silica gel trap, held at 195 K by an ethanol-dry ice slush, and then condensing it at 77 K by means of a liquid N₂ trap. Occasional pumping was also carried out to remove noncondensables. CO was purified by passing it through Cu/CuO filings at about 423 K and two liquid N2 traps. FTIR spectra were taken to ascertain the purity of the gases. Ar of 99.999% purity, obtained from Specialty Gases, was used without further purification. Care was always taken to adequately purge and evacuate the vacuum lines while making the mixtures and expanding the gases into the reactor and the FTIR analysis cell.

Results

Typical time-resolved concentration profiles of NO and NH₃ are shown in Fig. 1. The data were kinetically modeled via CHEMKIN [20] and SEN-KIN [21], using a mechanism composed primarily of reactions recently used in our simulation of the kinetics of the NH₃-NO system initiated by a pulsed ArF (193 nm) laser near 1000 K [10] and reactions studied by others [22–24,26,27]. The total rate constant, $k_t = k_1 + k_2 = 9.6 \times 10^{14} T^{-0.85} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$, previously measured [10] for the NH₂ + NO reactions (1) and (2), was used and held constant at each temperature, and k_1 was varied until the best fit with $\alpha_1 = k_1/k_t$ was found.

In this system, NO reduction is initiated by NH₃ + NO \rightarrow NH₂ + HNO, reaction (3), but because of the unavailability of an experimentally determined rate constant for this reaction, the value of k_3 was obtained by variational transition state theory (VTST) calculation based on a high level ab initio MO result [25]: $k_3 = 1.04 \times 10^7 \, T^{1.73} \, e^{-28,454/T} \, \mathrm{cm}^3$ mol⁻¹ s⁻¹. Because of the high temperatures involved, the decay of NO and NH₃ was found to be controlled to a much greater extent by the mutually competitive reactions (1) and (2) than by reaction (3), as can be seen by the result of representative sensitivity analyses in Fig. 2. The reliability of the modeled α_1 values can also be seen in Fig. 1, where predicted profiles of NO and NH3 with the branching ratio values of ± 0.1 from best fit values of α_1 are plotted. Our branching ratio results for seven other temperatures and NH₃ and NO concentrations are summarized in Table 1. These results will be compared with other branching ratio data later.

FIG. 2. Plot of normalized sensitivity coefficients for NO (A) and NH₃ (B) with the initial conditions and α_1 values presented in Table 2 (Nos. 4 and 9, respectively). The rate constants of the reactions identified in the figure are given as follows in units of cm³ mol⁻¹s⁻¹:

$\rm NH_2$ + $\rm NO \rightarrow HN_2$ + $\rm OH$	$k_1+k_2=9.6\times10^{14}\;T^{-0.85}$
$\rm NH_2$ + NO $\xrightarrow{2}$ N ₂ + H ₂ O	
$NH_3 + NO \xrightarrow{3} NH_2 + HNO$	$k_3=1.0\times10^7\;T^{1.73}\!e^{-28454/T}$
$HNO + NO \xrightarrow{9} N_2O + OH$	$k_9 = 8.5 \times 10^{12} e^{-14920/T}$
$H + NH_3 \xrightarrow{15} NH_2 + H_2$	$k_{15}=1.3\times10^{14}\!e^{-10820/T}$
$H + HNO \xrightarrow{20} H_2 + NO$	$k_{20}=4.5\times10^{11}T^{0.72}e^{-327/T}.$

Reactions were also carried out in the temperature range of 900–1200 K using CO as the OH-radical scavenger. As in the NH₃-NO system, modeling of the NH₃-NO-CO system was also carried out with CHEMKIN [20] and SENKIN [21]. Under our reaction conditions, however, CO₂ formation was found to be sensitive to the NH₂ + NO branching reactions only at 1173 K and higher temperatures. Reaction conditions and modeled branching ratio values are presented in Table 1.

As discussed later, in addition to modeling our own kinetic data, we carried out computer simulation of data published earlier by Poole and Graven [28] for H_2O formation and briefly studied the work of Wise and Frech [29] for the rate of total pressure change.

Poole and Graven's H₂O-Formation Data

Poole and Graven [28] used a flow technique for gravimetric measurement of H_2O production from mixtures with varying amounts of NO and NH_3 diluted in N_2 or He to a total pressure of 800 torr. Two flow vessels were used: vessel I and vessel II of volumes 42.6 cm³ and 324 cm³ and surface-to-volume ratios of 5.6 cm⁻¹ and 2.3 cm⁻¹, respectively. The temperature range was 1123–1273 K. The measured H_2O -formation rate was found to follow the relationship

$$\frac{\Delta H_2 O}{\Delta t} = \frac{k_a (NH_3)^{1/2} (NO)}{1 - k_b (NH_3)^{1/2} (NO)}$$

Poole and Graven noted that at 1223 K, vessel I, which had an S/V ratio twice as large, yielded a 20% larger value of k_a and concomitantly a smaller value of k_b than vessel II, resulting in an effective rate difference between the two vessels by less than 10%. This compensating effect resulted in an even smaller (3%) difference between the NH₂ + NO product branching ratios (see Table 2) that we modeled for the two vessels. In Fig. 3, the quantity NO/(Δ H₂O/ Δt) is plotted against NH₃^{-1/2}, as presented originally by Poole and Graven. Each of these data points was employed to model the NH_2 + NO product branching ratio, and the average value for each temperature was used to calculate the rate of H₂O production; the result is shown as the solid curve in the figure. Table 2 summarizes the resulting average modeled branching ratio for the temperatures and conditions noted. The result of a sensitivity analysis for H_2O production shows that reaction (1) is the dominant reaction and that the initiation process has little effect on H₂O formation.

Wise and Frech's Total Pressure Measurement

Wise and Frech [29] pyrolyzed mixtures of 29.6– 64.6% $\rm NH_3$ and 31.6–70.4% NO in a quartz reaction vessel of 1560 cm³ with a surface-to-volume ratio of 1.12 cm⁻¹ in the temperature range of 990–1150 K.

No.	T/K	P/torr	No of exp.	$[NO]_0^a$	$[\mathrm{NH}_3]_0^b$	$[\mathrm{CO}]_0^a$	$t/10^2 s^c$	$lpha_1 \pm \sigma^d$
1	950	706	3	4.39	9.85		844.2	0.272 ± 0.011
2	1000	705	3	1.07	4.53		684.9	0.297 ± 0.011
3	1000	704	3	3.70	9.48		287.4	0.267 ± 0.005
4	1050	706	2	0.666	8.73	_	543.6	0.398 ± 0.001
5	1100	708	5	0.904	3.93		110.4	0.291 ± 0.004
6	1100	703	5	3.38	7.84	_	48.0	0.398 ± 0.004
7	1150	704	3	0.848	8.92	_	43.8	0.449 ± 0.013
8	1173	708	8	2.18	2.43	_	7.20	0.345 ± 0.005
9	1200	709	6	0.869	4.22		2.70	0.458 ± 0.012
10	1100	708	6	2.89	9.41	6.64	36.0	0.69^{e}
11	1173	705	7	1.96	7.81	4.52	3.00	0.505 ± 0.011
12	1200	707	5	2.59	9.28	5.95	8.40	0.511 ± 0.009

 TABLE 1

 Summary of the present experimental conditions and modeled values of α_1 for the NH₃/NO pyrolysis system

^{*a*}Concentrations of NO and CO are given in units of 10^{-7} mol cm⁻³.

^bConcentration of NH_3 is given in units of 10^{-8} mol cm⁻³.

^cThe time given is the longest pyrolysis time for each set of conditions.

^{*d*}For each set of conditions, $\alpha_1 = k_1/(k_1 + k_2)$ is the average of the branching ratios from NH₃ or NO (whichever was most sensitive for each set of conditions) decay modeled for each data point. σ is the mean of the deviations of the branching values modeled using each of the individual data points from α_1 .

"This point is not reliable because of the relatively low sensitivity indicated by the result of a sensitivity analysis.

 TABLE 2

 Summary of the our kinetic modeling values of α_1 by using Poole and Graven's [28] experimental conditions and H₂O-formation data

No./ vessel	T/K	P/torr	No of	[NO]4	[NH]k	t/s	$\alpha_1 + \sigma^d$
VC35CI	1/ K	1/1011	exp.		[1113]0	1/3	$\alpha_1 \pm 0$
1/II	1123	800^{c}	10	1.07 - 5.32	5.35	7.995-11.26	0.494 ± 0.017
2/II	1223	800	9	1.30 - 5.30	5.24	0.895 - 1.205	0.517 ± 0.011
3/II	1223	800	10	5.24	1.08 - 5.40	0.840 - 1.177	0.521 ± 0.007
4/I	1223	800	7	4.91	1.13 - 4.94	0.806 - 1.056	0.538 ± 0.003
5/I	1273	800	12	4.88	0.49 - 4.89	0.187 - 0.308	0.581 ± 0.009
6/I	1273	800	8	1.22 - 4.88	4.88	0.282 - 0.381	0.528 ± 0.031

^{*a*}Concentration is given in units of 10^{-6} mol cm⁻³.

 ${}^{b}\alpha_{1} = k_{1}/(k_{1} + k_{2})$ is the average of the branching ratios modeled for each point.

^cAll mixtures were diluted in Ar to 800 torr except for the last one, in which the mixture, consisting solely of NO and NH₃, was slightly more than 800 torr.

 ${}^{d}\sigma$ is the average deviation of each data point from α_{1} .

They monitored the progress of the reaction by observing the change in the total pressure of the system via a differential manometer filled with Fluorolube S. Wise and Frech found the following relationship between the total pressure change ΔP of the system and the initial partial pressures of NH₃ and NO: $\Delta P/$ $\Delta t = A \exp(-54, 700/RT)(NH_3)(NO)^{1/2}$, which, interestingly, is totally different from that of Poole and Graven's H_2O -formation measurements as presented in the preceding section.

Since the rate of total pressure change is a global quantity, we only briefly modeled Wise and Frech's $\Delta P/\Delta t$ data, which were presented in their Figs. 1 and 2. The result of this modeling gave $\alpha_1 = 0.41$ at both 994 and 1056 K, which is in reasonable agreement with the values given in Tables 1 and 2.

FIG. 3. Comparison of experimental and modeling results. The points are $[NO]/(\Delta H_2O/\Delta t)$ versus $[NH_3]^{-0.5}$ experimental results of Poole and Graven [28] with conditions as outlined in Table 2 (Nos. 3, 4, and 5, corresponding to A, B, and C, respectively); the solid curves are our modeled results.

FIG. 4. Summary of the branching ratio α_1 as a function of temperature. O: This work; modeling of NH₃, NO, and CO₂ concentration profiles. 0: Our modeling of Poole and Graven's [28] data. 0: Ref. 3. +: Ref. 5. \varDelta : Ref. 11. X: Ref. 12. \diamond : Ref. 14. \Box : Ref. 9. solid curve: Ref. 30.

Discussion

Our result, evaluated in the temperature range of 950–1200 K, although effectively bridging the gap between the low- ($T \le 1000$ K) and high- ($T \ge 1500$ K) temperature data, strongly favors the higher values of the branching ratio reported by Bulatov [14], Hanson [3], Vandooren et al. [5], and that employed by Glarborg et al. in their recent modeling of the

 $(\mathrm{NH}_3 - \mathrm{NO} - \mathrm{O}_2) \mathrm{NH}_3$ de- NO_x process [15]. It casts severe doubt on the lower values, $\alpha_1 \leq 0.2$ at $T \leq 1200$ K, obtained by Atakan et al. [11], as well as by Stephens and co-workers [12]. The greater OH-production efficiency in the low-temperature (300–1000 K) range has also been confirmed recently by measuring the yields of H₂O and CO₂ in a laser-initiated reaction of NH₃, NO, and CO by mass spectrometry [30], as shown in Fig. 4, which summarizes all experimentally determined α_1 values.

The low OH-production efficiencies at $T \le 1173$ K reported by Wolfrum et al. [11] and by Stephens co-workers [12], using laser-induced fluorescence and IR laser resonance absorption, respectively, although somewhat puzzling, could be attributed to the common difficulty in providing exact concentrations of a radical species for quantitative calibration over a wide range of temperatures. At high temperatures, the lack of accurate absorption cross-section data and the thermal instability of the OH-calibration source molecules such as H2O2 may also become severe problems. Our direct determination of the rates of reactant (NH₃ and NO) decay and product (CO₂ and H₂O) formation by FTIR spectrometry and/or mass spectrometry [30], aided by accurate calibrations, allowed us to circumvent the difficulty and minimize the uncertainty.

As can be seen in Fig. 4, our average values of α_1 , 0.278 ± 0.011 and 0.289 ± 0.009 , at 950 and 1000 K, respectively, agree closely with the branching ratio values measured mass spectrometrically by Park and Lin [30], as well as with those employed by Glarborg et al. [15], $\alpha_1 = 2.2 \times 10^{-3} T^{0.70}$, in their modeling of experimental de-NO_x data [31–33]. These authors [15] also concluded that the effect of the quartz reactor surface on the overall NO_x-reduction kinetics is negligible under low surface-tovolume (S/V) conditions used in typical pyrolytic experiments. In fact, our branching ratio modeling of Poole and Graven's [28] H₂O-formation rates in the $NH_3 + NO$ reaction indicates that an increase of S/ V from 2.3 to 5.6 cm⁻¹ has only a negligible (3%) effect on α_1 for the NH₂ + NO reactions, which strongly affect the rates of H₂O production. Under our temperature and pressure conditions with S/V = 0.5 cm^{-1} , which is much smaller than either of the S/V ratios of the vessels used by Poole and Graven [28], the effect of the quartz reactor surface on the modeled values of α_1 is believed therefore to be negligible.

The values of α_1 determined in the present study appear to be insensitive to the lifetime or the magnitudes of the rate constants of the HN₂ radical assumed in the mechanism. Under the conditions employed ($T \ge 940$ K, P = 700 torr Ar), an increase or decrease in the rate constants assumed for the following reactions involving HN₂:

$$HN_2 + M = N_2 + H + M$$

 $k = 1.0 \times 10^{14} e^{-1510/T} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$

$$HN_2 + NO = N_2 + HNO$$

 $k = 7.2 \times 10^{13} T^{-0.4} \text{ cm}^3 \text{ mol}^{-1} \text{ s}^{-1}$

by two orders of magnitude separately resulted in no noticeable effect on the calculated concentration profiles of the reactants or products. In fact, the assumption of the direct production of the H atom in reaction (1), by using NH₂ + NO = H + N₂ + OH, resulted in no change in the modeled α_1 values. The same conclusion was reached in our recent mass spectrometric study of the NH₂ + NO reaction [30].

The sharp increase in the value of α_1 with temperature is challenging theoretically. The prediction of the branching ratio and the effect of temperature on its value quantitatively requires not only the full knowledge of the intermediates and transition states for the isomerization reactions involving these intermediates (as has been acquired by Melius [7], Walch [8], and Durant [9]), but also a full understanding of the interaction potential for the reactants $(NH_2 and$ NO) and the radical products (HN₂ and OH) for a reliable calculation of the capturing and fragmenting processes, respectively. To more reliably calculate the rate constants for reactions (1) and (2) at different temperatures, an elaborate statistical approach such as variational RRKM theory should be used in conjunction with the multiple-reaction intermediates involved.

Acknowledgment

The authors gratefully acknowledge the support of this work by the Office of Naval Research through contract no. N00014-89-J-1949 to Emory University under the direction of Dr. R. S. Miller.

REFERENCES

- Lyon, R. K. U.S. Patent 3, 900, 554, Int. J. Chem. Kinet. 8:315–318 (1976).
- Miller, J. A., Branch, M. C., and Kee, R. J., Combust. Flame 43:81–98 (1981).
- Kinball-Linne, M. A. and Hanson, R. K., Combust. Flame 64:337–351 (1986).
- Dean, A. M., Chou, M. S., and Stern, D., Int. J. Chem. Kinet. 16:633–653 (1984).
- Vandooren, J., Bian, J., and van Tiggelen, P. J., Combust. Flame 98:402–410 (1994).
- Brown, M. J. and Smith, D. B., *Twenty-Fifth Symposium (International) on Combustion*, The Combustion Institute, Pittsburgh, 1995, pp. 1011–1018.
- Melius, C. F. and Binkley, J. S., Twentieth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 1985, pp. 575–583.

- 8. Walch, S. P., J. Chem. Phys. 99:5295-5300 (1993).
- Durant, J. L. Jr., Proc. Seventeenth Combustion Contractors Meeting, May 31–June 2, 1995, Lake Geneva, WI, pp. 84–87.
- Diau, E. W. G., Yu, T., Wagner, M. A. G., and Lin, M. C., J. Phys. Chem. 98:4034–4042 (1994).
- Atakan, B., Jacobs, A., Wahl, M., Weller, R., and Wolfrum, J., Chem. Phys. Lett. 155:609–613 (1989).
- Stephens, J. W., Morter, C. L., Farhat, S. K., Glass, G. P., and Curl, R. F., *J. Phys. Chem.* 97:8944–8951 (1993).
- Silver, J. A. and Kolb, C. E., J. Phys. Chem. 86:3240– 3246 (1982).
- Bulatov, V. P., Ioffe, A. A., Lozovsky, V. A., and Sarkisov, O. M., *Chem. Phys. Lett.* 161:141–146 (1989).
- Glarborg, P., Dam-Johansen, K., Miller, J. A., Kee, R. J., and Coltrin, M. E., *Int. J. Chem. Kinet.* 26:421– 436 (1994).
- Andrews, D. G. R. and Gray, P., Combust. Flame 8:113–125 (1964).
- He, Y., Kolby, E., Shumaker, P., and Lin, M. C., Int. J. Chem. Kinet. 21:1015–1027 (1989).
- Aldridge, K. H., Liu, X., Lin, M. C., and Melius, C. F., Int. J. Chem. Kinet. 23:947–956 (1991).
- He, Y., Liu, X., Lin, M. C., and Melius, C. F., Int. J. Chem. Kinet. 25:845–863 (1993).
- Kee, R. J., Rupley, F. M., and Miller, J. A., "CHE-MKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics," Sandia National Laboratories Report SAND89-8009, 1989.
- Lutz, A. E., Kee, R. J., and Miller, J. A., "SENKIN: A Fortran Program for Predicting Homogeneous Gas-Phase Chemical Kinetics with Sensitivity Analysis," Sandia National Laboratories Report SAND87-8248, 1988.
- Diau, E. W. G., Lin, M. C., He, Y., and Melius, C. F., Prog. Energy Combust. Sci. 21:1–23 (1995).
- Hanson, R. K. and Salimian, S., "Survey of Rate Constants in the N/H/O System," in *Combustion Chemistry* (Gardiner, W. C. Jr., Ed.), Springer Verlag, New York, 1984, pp. 361–421.
- Baulch, D. L., Cobos, C. J., Cox, R. A., Esser, C., Frank, P., Just, T., Kerr, J. A., Pilling, M. J., Troe, J., Walker, R. W., and Warnatz, J., *J. Phys. Chem. Ref. Data* 21:411–734 (1992).
- Mebel, A. M., Diau, E. W. G., Lin, M. C., and Morokuma, K., J. Phys. Chem. 100:7517–7525 (1996).
- Wu, C. H., Wang, H.-T., Lin, M. C., and Fifer, R. A., J. Phys. Chem. 94:3344–3347 (1990).
- Diau, E. W., Halbgewachs, M. J., Smith, A. R., and Lin, M. C., Int. J. Chem. Kinet. 27:867–881 (1995).
- Poole, D. R. and Graven, W. M., J. Am. Chem. Soc. 83:283–287 (1961).
- Wise, H. and Frech, M. W., J. Chem. Phys. 22:1463– 1464 (1954).
- Park, J. and Lin, M. C., J. Phys. Chem. 100:3317–3319 (1996).
- Lyon, R. K. and Hardy, J. E., Ind. Eng. Chem. Fundam. 25:19–24 (1986).
- 32. Lyon, R. K., Div. Fuel Chem. 32:433-443 (1987).
- Hulgaard, T. and Dam-Johansen, K., A. I. Chem. Eng. J., 39:1342–1354 (1993).

2114

COMMENTS

W. Gardiner, Jr., University of Texas—Austin, USA. Could you please comment on the pressure dependence of the branching ratio of the $\rm NH_2$ + NO reaction?

Author's Reply. On the basis of the results of our previous RRKM calculations [1], the overall rate constant for NH₂ + NO and those for the two product channels, N₂H + OH and N₂ + H₂O, are pressure-independent

under deNOx conditions (1200 K \leq T \leq 1400 K, P \leq 1 atm).

REFERENCE

 Diau, E. W. G., Yu, T., Wagner, M. A., and Lin, M. C., J. Phys. Chem. 98:4034 (1994).