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Abstract: Perovskite nanocrystals (PeNCs) are known for their use in numerous optoelectronic appli-
cations. Surface ligands are critical for passivating surface defects to enhance the charge transport and
photoluminescence quantum yields of the PeNCs. Herein, we investigated the dual functional abili-
ties of bulky cyclic organic ammonium cations as surface-passivating agents and charge scavengers to
overcome the lability and insulating nature of conventional long-chain type oleyl amine and oleic acid
ligands. Here, red-emitting hybrid PeNCs of the composition CsxFA(1−x)PbBryI(3−y) are chosen as
the standard (Std) sample, where cyclohexylammonium (CHA), phenylethylammonium (PEA) and
(trifuluoromethyl)benzylamonium (TFB) cations were chosen as the bifunctional surface-passivating
ligands. Photoluminescence decay dynamics showed that the chosen cyclic ligands could successfully
eliminate the shallow defect-mediated decay process. Further, femtosecond transient absorption
spectral (TAS) studies uncovered the rapidly decaying non-radiative pathways; i.e., charge extraction
(trapping) by the surface ligands. The charge extraction rates of the bulky cyclic organic ammonium
cations were shown to depend on their acid dissociation constant (pKa) values and actinic excitation
energies. Excitation wavelength-dependent TAS studies indicate that the exciton trapping rate is
slower than the carrier trapping rate of these surface ligands.

Keywords: perovskite nanocrystals; red emission; surface ligands; defect passivation; charge extraction;
exciton; femtosecond TAS

1. Introduction

Organic-inorganic halide perovskite nanocrystals (PeNCs) in the form ABX3
(A = organic/inorganic cations like Cesium cation (Cs+), methylammonium cations (MA),
and formamidinium cations (FA); B = Pb2+ or Sn2+; X = Cl−, Br− or I−) are now popularly
being used in many applications such as LEDs, solar cells, photodetectors, photocatalysts,
and so on [1–8]. The advantage of choosing these PeNCs over conventional semiconductors
is their ease of preparation, impressive device performances, and the tunability of their
excellent optoelectronic properties [3,9]. The competitive device performances of PeNCs are
attributed to the low defect density and high activation energies required for the formation
of deep defects. The major hurdles for commercializing PeNCs are their long-term stability,
ion migration, hysteresis, and degradation caused by oxygen and water vapor [10–14].

The surface chemistry of the encapsulating ligands plays a prominent role in mod-
ulating the optical properties and stabilities of the PeNCs [3,8,13,15–24]. Conventionally,
PeNCs synthesized by the hot injection/addition methods utilize oleylamine (OLA) and
oleic acid (OA) as encapsulating ligands [1,25]. The labile nature of these ligands leads
to the loss of surface ligands during purification [25], affecting the stability, whereas the
insulation nature of these ligands inhibits efficient charge conduction [23]. Several sur-
face engineering strategies have been worked out to passivate the surface defects and
improve the charge conduction properties of the PeNCs [15,18,19,24,26–32]. Among them,
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utilizing cyclic aromatic cations to simultaneously passivate the surfaces and induce inter-
facial energy transfer is an interesting approach to boost the conduction properties of the
PeNCs [15,26,27]. The acid–base chemistry between the uncoordinated lead ions and the
encapsulating surface ligands is of importance, as the former, being a soft acid, prefers a
soft base to achieve efficient passivation of the surface [17,31]. Despite efficient passivation
by soft base-type ligands, the photoluminescence quantum yields in most of the cases are
less than unity [19]. The mechanisms of the non-radiative losses induced by passivating
ligands need deeper understanding.

In this study, we show the passivating effects of the bulky cyclic/aromatic cations
(short-chain ligands) on synthesized red-emitting CsxFA(1−x)PbBryI(3−y) (CsFA) PeNCs.
The short-chain ligands used to passivate the surfaces of CsFA PeNCs are cyclohexylammo-
nium (CHA), phenylethylammonium (PEA) and 4-(trifluoromethyl)benzylamonium (TFB).
Photoluminescence decay studies show efficient passivation of shallow trap states by these
short-chain ligands. Further, femtosecond transient absorption spectral (TAS) experiments
have been performed to uncover the nonradiative losses in the PeNCs. It is shown that
surface ligands are responsible for the ultrafast nonradiative losses induced in these PeNCS,
and the rates of trapping are shown to correlate with the pKa values of the surface ligands.

2. Materials and Methods
2.1. Chemicals

Lead iodide (PbI2) (purity 99%, Sigma Aldrich, St Louis, MO, USA), Cesium carbon-
ate (Cs2CO3) (purity 99%, Thermo Fisher Scientific, Germany), Formamidinium bromide
(FABr) (purity 99%, Greatcell Solar Materials, Queanbeyan, NSW, Australia), Phenylethy-
lammonium iodide (PEAI) (purity 99%, Greatcell Solar Materials, Queanbeyan, NSW,
Australia), Cyclohexylmethylammonium iodide (CHAI) (purity 99%, Greatcell Solar Mate-
rials, Queanbeyan, NSW, Australia), 4-Trifluoromethyl-benzylammonium iodide (TFBI)
(purity 99%, Greatcell Solar Materials, Queanbeyan, NSW, Australia), Oleylamine (OLA)
(Technical grade, purity 70%, Sigma Aldrich, Zwijndrecht, The Netherlands), Oleic acid
(OA) (Technical grade, purity 90%, Sigma Aldrich, Zwijndrecht, The Netherlands), Oc-
tadecene (Technical grade, purity 90%, Sigma Aldrich, St. Louis, MO, USA), Hydriodic acid
(57% in water, Alfa Aesar, Kandel, Germany), Isopropanol (IPA) (anhydrous, purity 99.5%,
Sigma Aldrich, Steinheim am Albuch, Germany), Methyl acetate (Purity 99%, Thermo
Fisher Scientific, Germany), Octane (Purity 99.8%, J T Baker Chemicals B V., Deventer,
The Netherlands).

2.2. Synthesis of Perovskite Nanocrystals

The PeNCs used in this work were synthesized using the one-pot sequential hot
addition method (HAM) reported elsewhere [33]. CsFA PeNCs were prepared from the
precursor solutions of Cs2CO3, FABr, and PbI2, whereas surface passivation of CsFA PeNCs
were performed by adding the precursor solutions of the bulky organic cations. A volume
of 0.94 mmol of Cs2CO3 precursor solution was prepared by adding 3 mL of OA and
3 mL of octadecane to a 20 mL vial, and the resultant mixture was heated at 150 ◦C until
the solution became transparent. A volume of 1.88 mmol FABr solution was prepared by
dissolving precursor salt in 3 mL IPA. Then, 1.88 mmol of PbI2 in octadecane was taken in a
50 mL round-bottomed (RB) flask and stirred for one hour at 100 ◦C to remove water. Later,
5 mL each of OA and OLA were added to dissolve the PbI2. The PbI2 solution changes
from turbid to clear after complete dissolution of PbI2. The temperature of the PbI2 solution
was further raised to 140 ◦C and the FABr solution was added. The reaction mixture turned
a turbid orange color in the RB flask. The temperature was slowly increased, and the
solution turned to light yellow color from turbid orange color during this process. When
the temperature became 200 ◦C, 6 mL of cesium oleate was added to the reaction mixture,
and then the RB flask carrying the reaction mixture was immediately immersed in an ice
bath to arrest the further growth of the PeNCs to the black phase. This completed the
synthesis of FACs PeNCs. The surface-passivated PeNCs’ synthesis involves an additional
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step, wherein 1.88 mmol of the corresponding bulky organic ammonium iodides (CHAI,
PEAI, and TFBI) in IPA were added to the reaction mixture together with the FABr before
the injection of cesium oleate. The synthesized PeNCs were purified using repetitive
washing and centrifugation methods as described. Crude PeNC solution was centrifuged
at 9000 rpm for 40 min. The precipitate containing large particles was discarded. The
supernatant is the desired PeNC sample of the desired size. The surface-passivated PeNCs
need further purification. Methyl acetate is added at a ratio of 1:3 to precipitate PeNCs. The
precipitates collected by centrifugation were finally dispersed in octane to obtain the final
products. The synthesized PeNCs are reported to display a relative photoluminescence
quantum yield of 0.72, 0.76, 0.70, and 0.69, respectively for Std, CHA, PEA, and TFB
samples [33]. The pKa values of the short-chain ligands were obtained by measuring the
pH of the corresponding 0.1 M aqueous salt solutions.

2.3. Optical Characterizations

UV-Visible absorption spectra of PeNCs samples were measured using a JASCO V-780
absorption spectrophotometer equipped with a JASCO integration sphere accessory. The
absorption spectra of PeNC samples were measured with a custom cell holder equipped
with BK9 glass windows with an optical pathlength of 0.2 mm. The absorption spectra
of the samples were corrected for reflection and scattering effects. The absorbance of the
PeNC samples was estimated using Equation (1) as shown below.

A = − log(
IT

(I0 − IR)
) (1)

where I0 and IT are the transmittances of the reference light and samples, respectively, and
IR is the reflectance of the sample.

The PL spectra of the PeNC samples were measured using a customized PL spectrom-
eter. The PL spectrometer is equipped with a 150 W Xe lamp from OBB as a light source.
The excitation wavelength was chosen using a Horiba microHR spectrometer (1200 groves
grating, blaze wavelength: 330 nm). The emission from the sample was collected using a
TRIAX spectrometer (600 groves grating, blaze wavelength: 500 nm). The collected emis-
sion was focused on the exist slit of the monochromator, collected by the photomultiplier
tube connected to the preamplifier. The signal was digitized using a SpecACQ2 digitizer.
All the electronic components are controlled by software in a coordinated way to obtain the
PL spectrum. The excitation wavelength was set to 450 nm for measuring the PL spectrum
of the samples. The excitation light scattering was minimized by using a 480 nm long pass
color glass filter on the emission side of the spectrometer.

The PL lifetime measurements of PeNC samples were performed using a PicoQuant
FluoTime 200 fluorescence lifetime spectrometer. The PeNCs were excited using a 375 nm
picosecond diode laser pulse (LDH-P-C -375, FWHM: 60 ps), controlled by a diode laser
driver PLD 200-B. The emission from the sample was collected by a double monochromator
and detected using a high-speed microchannel plate photomultiplier tube (MCP-PMT).
The MCP-PMT output was controlled and digitized by a PicoHarp 300 controller. The PL
lifetimes of PeNCs were measured in the range of 620–640 nm.

The fs-transient absorption spectra were acquired using an Excipro ultrafast pump-
probe absorption spectrometer (CDP systems). The TAS spectrometer was coupled with a
femtosecond Ti: Sapphire amplified laser system (Coherent Legend USP, 795 nm, 1 kHz,
3 mJ, 35 fs), optical parametric amplifiers (TOPAS-C), and a sapphire plate for generat-
ing femtosecond pump and probe pulses. The details of the TAS system are described
elsewhere [34]. Briefly, 480 nm and 640 nm pump pulses generated from TOPAS-C are
used for the above bandgap and the near-resonant pumping of PeNC samples dispersed
in an octane solution. The probe pulses are generated by focusing the weaker portion of
the fundamental beam on a sapphire plate to generate a white light continuum, which is
limited to 750 nm using a short pass filter. The pump-induced changes in the absorption
of the sample are measured by optically modulating the pump pulses using an optical
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chopper. The fluctuation in the probe light spectrum is nullified by referencing the probe
light. The time-dependent absorption changes in the sample are obtained by delaying the
pump pulses with respect to the probe pulse. The polarization between pump and probe
pulses is set to a magic angle to suppress the coherent artifacts. The transient absorption
spectra are corrected for the white light dispersion using the optical Kerr signals of the
solvent [35], and denoised using singular value decomposition (SVD) analysis.

3. Results

The schematic of CsFA PeNCs (Std) with surface-passivating long-chain ligand OLA
and halogen vacancies is shown in Figure 1a. The halogen vacancies on the surface were
passivated using the short-chain ligands CHA, PEA, and TFB as shown in Figure 1a,c,
respectively. Further, the surface-passivating effects of short-chain ligands CHA, PEA, TFB
on the Std PeNCs were examined using the optical spectroscopic techniques described
below. The surface-passivated PeNCs hereafter are referred to using their ligand abbrevia-
tion names.
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Figure 1. (a) Schematic of CsxFA(1−x)PbBryI(3−y) PeNCs showing halogen vacancies and their
passivation by short-chain ligands, (b) UV-PL spectra of Std, CHA, PEA and TFB PeNC samples and
(c) chemical structures of surface-passivating short-chain ligands.

3.1. UV-PL Spectroscopy

UV-Vis absorption and PL spectra of PeNCs are shown in Figure 1b. The absorption
spectra of nanocrystal samples show the onset of absorption at 620 nm, while their emission
peaks were centered at 626 ± 7 nm, indicating that the synthesized nanocrystals are red-
emitting nanocrystals suitable for red LED applications with a narrow bandwidth of 20 nm.
The modest shifts in PL peak positions between the samples might be due to the modulation
of the composition proportions. It is worth mentioning that all optical measurements are
performed from diluted samples/thinner path length cell holders to maintain similar
optical densities for comparison purposes, and also to minimize the reabsorption effects on
the PL spectra. These precautions were taken to carefully evaluate the passivating ligands’
effects on the optical properties of the samples.

Further, the UV-Vis absorption spectra of the PeNC samples were fitted using Elliot’s
equations (Figure S1) described elsewhere [36–38]. The bandgaps estimated from Elliot’s fit
(Table S1) correlate well with the corresponding sample’s PL emission maximum, whereas
the estimated exciton-binding energies (Table S1) are extremely small, implying excitons can
split to free carriers easily, which is a common phenomenon for large-sized crystals [38,39].

3.2. TCSPC Decay Kinetics

The TCSPC decay profiles of PeNC samples are shown in Figure 2. The decay profiles
shown in Figure 2 were collected from respective PL maxima. The TCSPC decay profiles of
PeNCs show an instantaneous rise and a complete decay within 400 ns. The transient decay
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profiles were fitted using either exponential or stretched exponential functions. The Std
PeNCs samples fit well to the bi-exponential decaying function described by Equation (2),
while the CHA, PEA, and TFB samples were fitted to a stretched exponential function
described by Equation (3).

I(t) = A1exp
(
− t

τ1

)
+ A2exp

(
− t

τ2

)
(2)

I(t) = A exp
(
− t

τ

)β

(3)
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decay profiles were monitored at their respective PL maxima positions of the samples. (b,c) PL decay
mechanism for the surface-passivated and standard PeNC samples, respectively.

Here, A1, A2, and A are preexponential factors, τ1, τ2, and τ are time coefficients,
and β (which lies between 0 and 1) is the stretching exponent that expresses the degree of
asymmetry of the synthesized PeNCs.

The Std PeNC decays with time constants of 16.5 ns and 44 ns, as shown in Figure 2,
whereas surface-passivated samples decay with a time constant of 15 ns and β close to unity
(mono-exponential behavior), indicating that the samples are either homogenous in nature
or the emission centers of the PeNCs are of similar origin. Wavelength-dependent decay
profiles (Figure S2) display longer lifetimes on the longer wavelength side of their respective
emission spectra, which is indicative of inter-crystal energy transfer in the PeNCs due to
exciton hopping [39,40]. Further, the observed 16.5 ns and 44 ns decaying time constants for
the Std PeNC sample were attributed to direct and shallow trap state-mediated recombina-
tion, as described by Figure 2c. The assignments of the faster decaying components to direct
recombination and slower recombination with delayed luminescence caused by shallow
trap states has also been observed for other types of PeNC samples [41,42]. The effective
surface-passivating nature of the bulky organic ligands is clearly described by their TCSPC
decay profiles, as the shallow trap state-mediated recombination is completely quenched,
as shown in the relaxation mechanism in Figure 2b. However, the TCSPC results presented
in this section are limited to the sub-nanosecond and nanosecond decay dynamics, the
nonradiative processes occurring in the sub-picosecond time scales, and the reasons for the
non-unity PLQY are scant in these studies. Hence, fs TAS experiments were performed to
uncover the faster dynamics of the PeNC samples.

3.3. TAS Decay Dynamics: Above Bandgap Excitation

The TAS profiles of PeNC samples for the above bandgap excitation condition were
performed by exciting the samples using 480 nm actinic pump pules, and probing between
530 and 730 nm using broadband white-light continuum pulses, as shown in Figure 3.
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The top panels show the evolution of the TAS profiles acquired between 0–2 ps of pump-
probe delay times, whereas the bottom panels display the subsequent recombination of
the TAS profiles acquired between 5–800 ps of pump-probe delay times. The TAS profile
shapes of all PeNC samples resemble each other, except for the differences in their bleach
minima positions and their decay dynamics. Further, the TAS profiles shown between
0–2 ps reflect the signatures of hot carrier distributions, as described earlier [43,44], whereas
recombination decays at later stages can be seen in the TAS profiles shown between 5–800 ps.
The decay-assisted decomposition of TAS profiles was deconvoluted using the modeling of
the kinetic profiles using a relaxation scheme which will be discussed later.
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CsxFA(1−x)PbBryI(3−y). The actinic excitation wavelength for the samples was set to 480 nm.

3.4. TAS Decay Dynamics: Near-Resonant Excitation

The TAS profiles of PeNC samples in the near-resonant excitation condition was
performed by exciting the samples using 640 nm actinic excitation pulses, while the probing
region is set similar to the above band gap excitation, as shown in Figure 4. Near-resonant
excitation experiments were performed to eliminate the hot carrier profiles from the TAS
profiles and focus only on the recombination dynamics of the excitons or cold carriers.
Similar to the above band gap excitation, the top panels show the evolution of the TAS
profiles acquired between 0–2 ps of pump–probe delay times, whereas the bottom panels
display the subsequent recombination of the TAS profiles acquired between 5–800 ps of
pump–probe delay times. The TAS profile shapes of all PeNC samples acquired under near-
resonant conditions are sharper and smoother than the above bandgap excitations. The
sharper band shapes confirm the absence of hot carriers under near-resonant conditions,
whereas smoother band shapes could be due to weaker scattering from the PeNCs under
640 nm excitation. Further, the TAS profiles shown between 0–2 ps display no photoinduced
absorption (PIA) band on the blue side of the PB band, unlike the above bandgap excitation.
The PIA band on the blue side of the PB band is assigned to the population of forbidden
excitonic state due to the breaking of inversion symmetry for PeNCs [45]. The decay-
assisted decomposition of TAS profiles was deconvoluted using the modeling of the kinetic
profiles, using a relaxation scheme which will be discussed later.
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Figure 4. TAS profiles of perovskite nanocrystals of the composition CsxFA(1−x)PbBryI(3−y) (Std),
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3.5. Decay-Assisted Spectral Deconvolution: Kinetic Modeling of TAS Profiles

The TAS profile spectrograms were subjected to singular-value decomposition (SVD)
analysis for both the above bandgap and near-resonant excitation conditions to find the
minimum resolvable spectral features in both of the experiments. SVD analysis suggests
that at least three components (Figure S3) are required to model the relaxation kinetics
based on their decay dynamics. Based on spectral features and energies of excitation, a
free carrier model is applied for above band gap excitation, whereas the exciton model is
applied for near-resonant excitation, as shown in Figure 5. The choice of the models can be
justified as the above bandgap excitation energy is sufficient to split the weakly binding
excitons to hot carriers, and similarly, resonant excitation with the excitonic transitions
should deplete exciton bands, yielding more excitons, as evidenced by the sharp PB bands
for the near-resonant excitation condition.
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Figure 5. Carrier (a) and exciton (b) relaxation kinetic models for PeNCs under 480 nm (above band
gap) and 640 nm (near-resonance) excitation conditions, respectively.

The kinetic models described in Figure 5 are sequential parallel models describing the
heterogeneous carrier/exciton relaxation processes, namely in the bulk and in the proximity
of surface defects. Photoexcitation with actinic excitation pulses produces an excess hot
carriers/excitons depending on the excitation energy, which progressively cools down and
leads to recombination of cold carriers in bulk PeNC, whereas the hot carriers/excitons
when produced close to the proximity of surface defect will be captured by the defect sites,
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which are referred to as surface carriers/excitons. They recombine non-radiatively via
an alternative pathway to that of bulk PeNC. The wavelength-dependent TAS profiles
shown in Figures S4–S11 were fitted to their respective kinetic models to deconvolute the
decay-assisted spectra, as shown in Figure 6. The kinetic models are validated by global
fitting of the TAS kinetic profiles at all probe wavelengths. Further residual maps shown
in Figures S4–S11 were checked to see the authenticity of the data fitting according to the
kinetic model (Figure 5). The featureless residual maps confirm the validity of our fitting
approach. The fitting coefficients obtained from the curve fitting of TAS profiles using the
kinetic models are shown in Tables 1 and 2.
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composition CsxFA(1−x)PbBryI(3−y) (Std).

Table 1. Carrier model fitting coefficients obtained from the global fitting of TAS profiles obtained
using 480 nm actinic excitation pulses. τ1 is the hot carrier cooling time, τ2 is surface carrier recombi-
nation time and τ3 is the ns offset.

Sample τ1 (ps) τ2 (ps)

Std. 0.5 108
CHA 0.6 42
PEA 0.5 45
TFB 0.5 22

Table 2. Exciton model fitting coefficients obtained from the global fitting of TAS profiles obtained
using 640 nm actinic excitation pulses. τ1 is the hot carrier cooling time, τ2 is surface exciton
recombination time and τ3 is the ns offset.

Sample τ1 (ps) τ2 (ps)

Std. 0.1 168
CHA 0.1 92
PEA 0.2 100
TFB 0.1 49

The hot carrier/exciton cooling times are shown to be independent of the surface
ligand passivation effects, as shown in Tables 1 and 2, with a cooling time of 0.5 and
0.1 ps, respectively, for the hot carriers and excitons. However, surface carrier/exciton
recombination time coefficients showed similar changes with changes in the composition of
the surface ligands, as shown in Tables 1 and 2. The surface carriers/exciton recombination
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seem to correlate with the pKa values of the surface ligands. The estimated pKa values of
the surface ligands decrease in the order of PEA (12.14) > CHA (11.68) > TFB (10.89). The
surface carrier/exciton recombination also follows the same order as the pKa, with pristine
samples being slowest due to the insulating nature of the OA/OLA ligands. The smaller
the pKa the higher the affinity to accept the electrons.

4. Discussion

The PL lifetimes of PeNCs showed both radiative and delayed luminescence pro-
cesses on the nanosecond timescale, whereas TAS results demonstrate a non-radiative
channel with a timescale of under 100 ps. The delayed luminescence process occurring
in the nanosecond timescales are often attributed to shallow defects stemming from io-
dine vacancies, whereas the picosecond non-radiative processes shown in this work could
be due to the charge or exciton transfer/trapping to the surface-passivating ligand, as
shown elsewhere [41,46]. The short-chain surface ligands successfully blocked the shallow
trap-mediated recombination; however, they opened up another charge/exciton funneling
channel. So, DFT calculations (basis: B3LYP/631 + g(d, p), charge: singlet) were performed
to estimate the HOMO and LUMO levels of the surface ligands to check the energetic
alignments with that of pristine CsPbBr3 and CsPbI3 nanocrystals, as shown in Figure 7c.
The LUMO levels of the ligands lie deeper in the forbidden gap of PeNCs, and therefore the
picosecond non-radiative recombination process observed in the TAS experiments could be
that of charge/exciton trapping to the surface ligand, whose rates correlate well with the
pKa values of the ligands. Further, the relaxation model showing the charge and exciton
trapping under the above band gap and resonant excitations are shown in Figures 7a and
7b, respectively. The above bandgap produces hot carriers that cool within about ~0.5 ps
(τ1), and surface ligand-mediated recombination occurs within 100 ps (τ2), following Std
(108 ps) > PEA (45 ps) > CHA (42 ps) > TFB (22 ps), whereas band-to-band (τ3) and shallow
trap-mediated recombination (τ′, only for Std sample) occur on nanosecond timescales,
as described in the TCSPC decay section. Similarly, resonant excitation produces hot
excitons that are rapidly trapped by surface ligands within 0.1 ps (τ1), and the surface
ligand-trapped excitons (τ2) recombine slightly slower than the trapped carriers as follows:
Std (168 ps) > PEA (100 ps) > CHA (92 ps) > TFB(49 ps). However, band-to-band (τ3) and
shallow trap-mediated recombination (τ′, only for Std sample) occur in nanosecond times
scales. Further, it is interesting to note that pKa is the dominating effect, rather than the
aromaticity, as CHA and PEA samples display similar charge-trapping rates due to their
closer pKa values.
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The PL decay and TAS results presented in this study show both the passivation and
charge-scavenging nature of the surface ligands. The charge separation/scavenging caused
by the short-chain ligands may be beneficial for photovoltaic or photocatalytic applications
in which charges have to be extracted, whereas in the scenarios of retaining the radiative
recombination, surface ligands with weaker acidity are preferred. A surface ligand with
weak acidity is also less prone to deprotonation, which is beneficial for the long-term
stability of the PeNCs.

5. Conclusions

Red-emitting PeNCs of the composition CsxFA(1−x)PbBryI(3−y) were shown to have
emission at 626 ± 7 nm, with small exciton binding energies. The short-chain ligands
CHA, PEA, and TFB cations used in this study are shown to exert weak modulation on the
electronic bandgap. The TCSPC decay profiles of the Std PeNCs were shown to decay with
two decaying time coefficients of 16.5 ns (direction recombination) and 44 ns (shallow-trap
mediated recombination), respectively, while short-capping ligand-passivated samples
decay via a stretched exponential function with uniform time coefficients of about 15 ns,
and the stretch factor β is close to 0.9. The absence of long-lived decay components in the
CHA, PEA, and TFB samples confirms the passivation effects of the short-chain ligands.
Femtosecond TAS studies of the nanocrystals using 480 nm excitation show the spectral
signatures of hot carries, surface carriers, and cold carriers. The hot carriers recombine
with 0.5 ps for all samples, and cold carrier recombination was not complete, while the
surface carrier recombination rates show variation in the order Std (108 ps) > PEA (46 ps) >
CHA (42 ps) > TFB (22 ps). The increased reaction rates of surface carriers can be explained
based on the pKa, as the pKa shows the order PEA (12.14) > CHA (11.68) > TFB (10.89). The
decrease in pKa is associated with the increased electron-accepting ability of the ligands.
The charge losses at the surface of ligands were ascribed to the non-unity PLQY of these red-
emitting nanocrystals. Femtosecond TAS studies of the PeNCs under resonant excitation
showed the spectral signatures of the bulk exciton, surface exciton, and trapped exciton. It
is shown that surface exciton becomes trapped in 0.1 ps in all samples, and bulk excitation
is not complete in all the samples, while trapped excitons recombine non-radiatively in
a similar manner to surface carriers, but with varied decay coefficients: Std (168 ps) >
PEA (100 ps) > CHA (92 ps) > TFB (49 ps). The trapped excitons recombine slower when
compared to surface carriers due to the variation in the interactions between surface ligands
and carriers or excitons.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano13111718/s1, Figure S1: UV-Vis absorption spectra of (a)
Std, (b) CHA, (c) PEA and (d) TFB PeNC samples of the composition CsxFA(1−x)PbBryI(3−y) (Std).
The band edges of the absorption spectra were fitted to Elliot’s model equations, which is expressed
as a linear combination of excitonic and continuum states. The contributions of excitonic, continuum
and the total fits of the band edges are overlaid on the absorption profiles.; Figure S2: Wavelength
dependent TCSPC decay profiles (a) Std, (b) CHA, (c) PEA and (d) TFB PeNC samples of the com-
position CsxFA(1−x)PbBryI(3−y) (Std). The Std sample decay profiles were fitted to a bi-exponential
function whereas surface passivated PeNC samples decay profiles were fitted to a strectched expo-
nential function.; Figure S3: Singular value plots (a, e) Std, (b, f) CHA, (c, g) PEA and (d, h) TFB
PeNC samples of the composition CsxFA(1−x)PbBryI(3−y) (Std). The top and bottom panels results
represent 480 and 640 nm excitation conditions. These plots suggests that at least three species are
involved in the relaxation dynamics of perovskite nanocrystals irrespective of excitation and surface
passivation conditions.; Figure S4: Wavelength dependent transient absorption decay kinetic profiles
of (a) CsxFA(1−x)PbBryI(3−y) (Std) PeNCs. The decay kinetics were fitted with a kinetic model shown
in Figure 5a. The TA data were obtained using 480 nm excitation condition. Spectrogram of Std (b), re-
constructed spectrogram (c) obtained from the global curve fitting analysis and residual spectrogram
(d) obtained by subtracting b from c. The featureless residual spectrogram serves as a validation of
the kinetic model.; Figure S5: Wavelength dependant transient absorption decay kinetic profiles of
(a) CsxFA(1−x)PbBryI(3−y) PeNCs passivated with short chain ligand CHA. The decay kinetics were

https://www.mdpi.com/article/10.3390/nano13111718/s1
https://www.mdpi.com/article/10.3390/nano13111718/s1
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fitted with a kinetic model shown in Figure 5a. The TA data were obtained using 480 nm excitation
condition. Spectrogram of CHA (b), reconstructed spectrogram (c) obtained from the global curve
fitting analysis and residual spectrogram (d) obtained by subtracting b from c. The featureless residual
spectrogram serves as a validation of the kinetic model.; Figure S6: Wavelength dependent transient
absorption decay kinetic profiles of (a) CsxFA(1−x)PbBryI(3−y) PeNCs passivated with short chain
ligand PEA. The decay kinetics were fitted with a kinetic model shown in Figure 5a. The TA data were
obtained using 480 nm excitation condition. Spectrogram of PEA (b), reconstructed spectrogram (c)
obtained from the global curve fitting analysis and residual spectrogram (d) obtained by subtracting
b from c. The featureless residual spectrogram serves as a validation of the kinetic model.; Figure
S7: Wavelength dependent transient absorption decay kinetic profiles of (a) CsxFA(1−x)PbBryI(3−y)
PeNCs passivated with short chain ligand TFB. The decay kinetics were fitted with a kinetic model
shown in Figure 5a. The TA data were obtained using 480 nm excitation condition. Spectrogram of
TFB (b), reconstructed spectrogram (c) obtained from the global curve fitting analysis and residual
spectrogram (d) obtained by subtracting b from c. The featureless residual spectrogram serves as a
validation of the kinetic model.; Figure S8: Wavelength dependent transient absorption decay kinetic
profiles of (a) CsxFA(1−x)PbBryI(3−y) (Std) PeNCs. The decay kinetics were fitted with a kinetic model
shown in Figure 5b. The TA data were obtained using 640 nm excitation condition. Spectrogram of
Std (b), reconstructed spectrogram (c) obtained from the global curve fitting analysis and residual
spectrogram (d) obtained by subtracting b from c. The featureless residual spectrogram serves as
a validation of the kinetic model.; Figure S9: Wavelength dependent transient absorption decay
kinetic profiles of (a) CsxFA(1−x)PbBryI(3−y) (Std) PeNCs passivated with short chain ligand CHA.
The decay kinetics were fitted with a kinetic model shown in Figure 5b. The TA data were obtained
using 640 nm excitation condition. Spectrogram of CHA (b), reconstructed spectrogram (c) obtained
from the global curve fitting analysis and residual spectrogram (d) obtained by subtracting b from
c. The featureless residual spectrogram serves as a validation of the kinetic model.; Figure S10:
Wavelength dependent transient absorption decay kinetic profiles of (a) CsxFA(1−x)PbBryI(3−y) (Std)
PeNCs passivated with short chain ligand PEA. The decay kinetics were fitted with a kinetic model
shown in Figure 5b. The TA data were obtained using 640 nm excitation condition. Spectrogram of
PEA (b), reconstructed spectrogram (c) obtained from the global curve fitting analysis and residual
spectrogram (d) obtained by subtracting b from c. The featureless residual spectrogram serves as
a validation of the kinetic model. Figure S11: Wavelength dependent transient absorption decay
kinetic profiles of (a) CsxFA(1−x)PbBryI(3−y) (Std) PeNCs passivated with short chain ligand TFB. The
decay kinetics were fitted with a kinetic model shown in Figure 5b. The TA data were obtained using
640 nm excitation condition. Spectrogram of TFB (b), reconstructed spectrogram (c) obtained from
the global curve fitting analysis and residual spectrogram (d) obtained by subtracting b from c. The
featureless residual spectrogram serves as a validation of the kinetic model. Figure S12: Femtosecond
transient absorption spectrograms of (a) Std, (b) CHA, (c) PEA and (d) TFB PeNC samples of the
composition CsxFA(1−x)PbBryI(3−y) (Std). The spectrograms were obtained using 480 nm excitation
pulses. Figure S13: Femtosecond transient absorption spectrograms of ((a) Std, (b) CHA, (c) PEA
and (d) TFB PeNC samples of the composition CsxFA(1−x)PbBryI(3−y) (Std). The spectrograms were
obtained using 640 nm excitation pulses; Table S1: Estimations of bandgaps and exciton binding
energies obtained from UV-Vis absorption spectral band edge fitting using Elliot model equation
for CsxFA(1−x)PbBryI(3−y) (Std) and surface passivated perovskite nanocrystals with bulky organic
ligands CHA, PEA, and TFB.
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