©2006 The Japan Society of Applied Physics

Photoluminescence of Plasma Enhanced Chemical Vapor Deposition Amorphous Silicon Oxide with Silicon Nanocrystals Grown at Different Fluence Ratios and Substrate Temperatures

Chun-Jung LIN, Chi-Kuan LIN, Chih-Wei CHANG¹, Yu-Lun CHUEH², Hao-Chung KUO, Eric Wei-Guang DIAU¹, Li-Jen CHOU² and Gong-Ru LIN^{*}

Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University,

1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.

¹Department of Applied Chemistry, National Chiao Tung University, 1001, Ta Hsueh Rd., Hsinchu, Taiwan 300, R.O.C.

²Department of Materials Science and Engineering, National Tsing Hua University,

101, Section 2, Kuang Fu Rd., Hsinchu, Taiwan 300, R.O.C.

(Received September 21, 2004; revised April 28, 2005; accepted August 8, 2005; published online February 8, 2006)

Near-infrared photoluminescent dynamics of thermally annealed Si-rich SiO_x films grown by plasma enhanced chemical vapor deposition at different substrate temperatures and N₂O/SiH₄ fluence ratios are studied. The size of nanocrystallite Si (nc-Si) critically depends on the density of oxygen atoms in a Si-rich layer when the N₂O/SiH₄ ratio is smaller than 4; that is, it significantly increases at low N₂O/SiH₄ ratios. Deposition at a high N₂O/SiH₄ ratio strongly reduces the density of nc-Si and degrades the luminescence at 700–800 nm since the density of oxygen atoms is sufficient in the reaction of nc-Si with silicon atoms and formation of a stoichiometric SiO₂ matrix. Under a high RF power condition, the increasing substrate temperature usually inhibits the precipitation of nc-Si since high-temperature growth facilitates stochiometric SiO₂ deposition. The disappearance of visible PL reveals the complete regrowth of a stoichiometric SiO₂ matrix around a nanocrystallite Si cluster after annealing. The results of the transient luminescent analysis of Si-rich SiO_x samples corroborate well with the observed values and reveal a lifetime of 43 µs under an optimized nc-Si precipitation condition of 1100°C annealing for 3 h. [DOI: 10.1143/JJAP.45.1040]

KEYWORDS: Silicon nanocrystals, photoluminescence, plasma enhanced chemical vapor deposition, Si-rich silicon dioxide, lifetime

1. Introduction

Photoluminescent (PL) of nanocrystalline silicon (nc-Si) structures have been comprehensively investigated since the first report on the luminescence of porous Si.¹⁾ The optical gain observed in silicon dioxide waveguides with buried silicon nanocrystals further initiates the potential applications of all Si-based optoelectronic integrated circuits.²⁾ Up to now, several methods, which include plasma-enhanced chemical vapor deposition (PECVD),³⁾ electron-beam evaporation,⁴⁾ cosputtering⁵⁾ and Si ion implantation,^{6–8)} have been used to synthesize Si-rich SiO_x layers and to precipitate nc-Si. The most intriguing method is the PECVD deposition associated with subsequent heat treatment, since it enables the easy deposition of a Si-rich SiO_x film with a sufficiently high density of excess Si atoms by controlling the fluence of reactive gases. However, there are few studies on the correlation between the N₂O/SiH₄ fluence ratio and the substrate temperature for optimum nc-Si precipitation. In this work, the near-infrared continuous-wave (CW) and time-resolved (TR) PL spectroscopes are employed to study the effects of the substrate temperature and N₂O/SiH₄ fluent ratio on the PL intensity and lifetime of PECVD-grown, thermally annealed Si-rich SiO_x film with buried nc-Si.

2. Experimental

Si-rich SiO_x films with a thickness of about 100 nm were deposited on (100)-oriented *n*-type Si substrates with resistivities of $4-7 \Omega \cdot \text{cm}$ using a conventional high-density PECVD system at a pressure and a forward RF power of 50 mTorr and 200 W, respectively. The samples were prepared at different gas mixtures and substrate temperatures. Gas mixtures with a constant SiH₄ flucence of 30 sccm and various N₂O flucences (from 90 to 180 sccm) were used. The substrate temperature was changed from 100 to 350°C. The detailed processing conditions are shown in Table I. The Si-rich SiO_x samples were encapsulated by annealing in a quartz furnace with N₂ atmosphere at 1100°C from 1 to 5 h to induce precipitation of nc-Si. The thickness of a Si-rich SiO_x sample containing nc-Si structures was determined by α -step measurement after etching. Roomtemperature CWPL measurement with a pumping source, a He-Cd laser, at a wavelength and an average power intensity of 325 nm and 5 W/cm^2 , respectively, was carried out with a photon-counting system, which includes a fluorescence spectrophotometer (Jobin Yvon, TRIAX-320) with a wavelength resolution of 0.06 nm and a photomultiplier (Jobin Yvon, Model 1424M). In a TRPL experiment, a SiO_x film was pumped using a Q-switched YAG laser (Continuum, NY 60) at 355 nm and a repetition rate of 1 Hz. The pumping pulse width and pulse energy were 60 ps and 0.5 mJ, respectively. A PL signal was detected using a singlegrating monochromator with a near-infrared photomultiplier tube and recorded using a sampling scope (Lecroy, Model LT372 with a resolution of 2 ns).⁹⁾ A TRPL trace, $I_{PL}(t)$, was resolved to extract the PL lifetime using a deconvoluted equation,

Table I. N_2O flucences, SiH₄ flucences and substrate temperatures of different samples.

	A2	A7	A8	A9	A12	A13	A14	A17
N ₂ O (sccm)	90	120	150	180	120	120	120	120
SiH ₄ (sccm)	30	30	30	30	30	30	30	30
Temp. (°C)	100	100	100	100	200	250	300	350

^{*}Corresponding author. E-mail address: grlin@faculty.nctu.edu.tw

Fig. 1. PL spectra of 3-h-annealed Si-rich SiO_x films fabricated by PECVD with different N_2O/SiH_4 ratios. The inset shows the peak intensity as a function of the N_2O/SiH_4 ratio.

$$I_{\rm PL}(t) = \int_{-\infty}^{\infty} \sum_{n=1}^{k} I_n \exp\left(-\frac{t'}{\tau_n}\right) \cdot I_{\rm Laser}(t-t') dt',$$

where I_n and τ_n are the intensity and lifetime of the nc-Si.

3. Results and Discussion

3.1 Effect of N_2O/SiH_4 ratio on density of nc-Si in PECVD-grown Si-rich SiO_x film

After a Si-rich SiO_x film PECVD-grown at a constant substrate temperature of 100°C, a constant SiH₄ fluence of 30 sccm, and a N₂O/SiH₄ ratio of 4 was annealed at 1100°C for 3 h, a maximum PL intensity at a wavelength of 728 nm was observed (Fig. 1). An optimum N₂O fluence was found at 120 sccm, as shown in the inset of Fig. 1. The excess Si density of the PECVD-grown Si-rich SiO_x film is proportional to the density of nc-Si and the SiH₄ fluence. However, as the N₂O/SiH₄ ratio increases from 4 to 6, the density of nc-Si buried in the PECVD-grown Si-rich SiO_x film decreases and the PL intensity at 400-700 nm increases. The effects of the N₂O/SiH₄ ratio and the evolution of radiative centers buried in the SiO_x structure are seldom addressed. A sufficient amount of oxygen atoms, generated from the N_2O gas, completely reacts with Si atoms, generated from the SiH₄ gas, to deposit a stoichiometric SiO₂ film. After thermal annealing, oxygen-related defects, such as a neutral oxygen vacancy defect^{10–12} (NOV, denoted as $O_3 \equiv Si = Si \equiv O_3$), are activated. In a previous study,¹⁰⁾ NOV defects attributed to the displacement of oxygen atoms from the stochiometric SiO₂ matrix by the bombardment of Si ions, were usually observed in a Si-ion-implanted Si-rich SiO₂ film. In our experiment, the enhanced PL intensity at the wavelength of 455 nm is attributed to the NOV defect in the SiO₂ matrix fabricated using a sufficient N₂O fluence $(N_2O/SiH_4 \text{ ratios} > 5)$. This indicates that the growth of the stochiometric SiO₂ matrix at high N₂O/SiH₄ ratios is preferred. On the other hand, for the samples with $N_2O/$ SiH₄ ratios of 5 or larger, the PL intensity at a wavelength of 750 nm is not enhanced, since a complete reaction with oxygen and Si atoms causes few excess Si atoms to hardly precipitate nc-Si.

A low PL intensity of around 750 nm was obtained for the sample fabricated with a N_2O/SiH_4 ratio < 4. The size of

nc-Si buried in the Si-rich SiO_x film depends on the density of oxygen atoms in the Si-rich SiO_x film. Nc-Si larger than 5 nm can be observed in the Si-rich SiO_x film prepared with small N₂O fluences (N₂O/SiH₄ ratios < 4). In addition, the small N₂O/SiH₄ ratio cannot produce the stoichiometric SiO₂ matrix due to the insufficient density of oxygen atoms. It induces an imperfect quantum confinement effect in the SiO₂ matrix, resulting in the suppression of the PL radiating from nc-Si. The PL intensities at 455 nm for the NOV defect and 750 nm for nc-Si in the sample prepared with a $N_2O/$ SiH₄ ratio of 3 are observed to be lower than those of the sample prepared with a N₂O/SiH₄ ratio of 4. As shown in Fig. 1, the enhanced PL intensity in the visible range, attributed to oxygen-related defects, and the highest PL intensity in the near-infrared range, attributed to nc-Si, were observed in the sample with the N_2O/SiH_4 ratio of 4.

This indicates that at a suitable N_2O/SiH_4 ratio, not only the highest density of excess Si atoms, resulting in a large amount of nc-Si, but also the stoichiometric SiO₂ matrix, resulting in a better quantum confinement between nc-Si and the SiO₂ matrix, can be obtained. Therefore, the N_2O/SiH_4 ratio should be well controlled.

3.2 Effect of substrate temperature on density of excess Si atoms and nc-Si

In general, a stochiometric SiO₂ film is grown using a PECVD system at a substrate temperature and an RF power of 350-400°C and 700-900W, respectively. However, a nearly stochiometric SiO₂ film can be grown at an RF power as low as 200 W in our case. Typically, a further reduction in either substrate temperature or RF power results in an evident phase separation between Si and SiO₂ during deposition. The two different methods are potentially applicable to the fabrication of a Si-rich SiO_x film with a high excess Si density. Previously, the substrate temperature was maintained at 350-400°C, and the RF power was decreased to <50 W for preparing a Si-rich SiO_x film.^{2,3)} Nonetheless, the effect of reducing the substrate temperature at a given RF power on the excess Si density of the PECVDgrown Si-rich SiO_x film was seldom discussed. By increasing the substrate temperature from 100 to 350°C, the PL spectra of Si-rich SiO_x films PECVD-grown at an RF power of 200 W are shown in Fig. 2. The peak PL intensity shows a distinct decreasing trend with increasing substrate temperature. The near-infrared PL is mainly due to the quantum confinement effect of the nc-Si cluster, whereas the defectrelated visible PL can hardly be obtained in the PECVDgrown Si-rich SiO_x film.

After annealing, Ma *et al.* also observed the Si nanoparticles embedded in a Si-rich SiO₂ film deposited at a substrate temperature between 30 and 450°C.¹³⁾ The highest density of nc-Si was found in the Si-rich SiO₂ film deposited at a low substrate temperature of 30°C, which was attributed to the enhanced phase separation between Si and SiO₂ during low-substrate-temperature deposition at a high RF power in the PECVD chamber.¹⁴⁾ Obviously, a lowsubstrate-temperature deposition that facilitates the generation of nonstoichiometric SiO₂ was revealed in our experiment. The slightly increasing PL at 455 nm in the Si-rich SiO_x film deposited at such a low substrate temperature was also observed due to dense oxygen-related NOV defects.

Fig. 2. Room-temperature PL spectra of annealed Si-rich SiO_x films fabricated by PECVD with different substrate temperatures from 100 to 350°C. The inset shows the peak intensity as a function of substrate temperature.

Thus, a low substrate temperature is required for depositing a SiO_x film with a high excess Si density when the RF power of the PECVD system used is high. The peak PL at a wavelength between 703 and 728 nm is contributed by nc-Si with a diameter ranging between 3.5 and 3.8 nm. A nearly stoichiometric SiO₂ matrix prevents the formation of a large-size precipitate of mobile Si atoms, which increases the density of small-size nc-Si. Under a high RF power condition, a high substrate temperature is detrimental to the formation of nc-Si, since it favors stochiometric SiO₂ deposition.

3.3 Effect of annealing time on size and PL lifetime of nc-Si

The annealing-time-dependent PL spectra of sample A7 with the highest density of excess Si atoms are shown in Fig. 3. The optimum annealing time for the precipitation of nc-Si is 3 h, corresponding to the peak wavelength of 703 nm. The PL at a wavelength of 455 nm for the as-grown sample A7 is attributed to the NOV defect. After annealing at 1100°C for 1 h, the sample A7 has the maximum PL intensity of the NOV defect. In comparison, the optimized annealing time for the PECVD-grown SiO_x sample is similar

Fig. 3. PL spectra of as-grown sample A7 after annealing at $1100^\circ C$ for $1{-}5\,h.$

Fig. 4. Peak PL intensities of NOV defect and nc-Si, and peak wavelength of nc-Si as a function of the annealing time.

to that (1.5 h) for the multienergy Si-ion-implanted SiO₂ sample reported previously.¹⁵⁻¹⁷⁾ Moreover, the NOV intensities of both the PECVD-grown and Si-ion-implanted SiO₂ samples decrease after annealing at 1100°C for 2 h. As the annealing time increases to 5 h, the peak intensity of the NOV defect rapidly decreases since most of the NOV defects are annealed in a high-temperature environment. In addition, the peak wavelength is redshifted from 455 to 727 nm due to the precipitation of nc-Si, as shown in Fig. 4. This indicates that the increase in PL intensity at a wavelength of 600 nm is attributed to small-size nc-Si. After 1-h annealing, the excess Si atoms rapidly precipitate into small-size nc-Si. Moreover, nc-Si is enlarged due to the accumulation of small-size nc-Si after a long thermal annealing time of up to 3 h. An obvious redshift of the peak PL wavelength is also found after annealing times of 1 to 3h. However, as the annealing time increases to 5 h, a small redshift is observed due to large-size nc-Si. On the other hand, the variations in the PL intensities of NOV and nc-Si as a function of annealing time are shown in Fig. 4. The intensities of nc-Si were determined at a wavelength of 703 nm. The optimized annealing time for nc-Si is 3h and the intensity of nc-Si decreases by a factor of 5 as the annealing time increases to 5 h due to the reaction of nc-Si with mobile oxygen atoms resulting in the regrowth of SiO₂ matrix.

The PL lifetimes of sample A7 for the annealing times of 1, 2, and 3 h are 27, 39, and 43 µs, respectively, and the PL decayed spectra are shown in Fig. 5. The calculated size of nc-Si buried in the Si-rich SiO_x film grown under the conditions of sample A7 is around 3.7 nm. In comparison, Brongersma *et al.*¹¹ formed Si nanocrystals (diameter, 2–5 nm) by Si ion implantation and thermal annealing at 1100°C, and the room-temperature lifetime of Si nanocrystals with a PL wavelength of about 710 nm is similar to our result. Moreover, the decayed lifetime of nc-Si embedded in the sample A7 after annealing for 3 h ($\tau_{nc-si} = 43 \mu s$) is very close to that obtained from the plot (lifetime τ vs λ_{PL}) given by Garcia *et al.*¹⁸

4. Conclusions

The CWPL and TRPL properties of thermally annealed PECVD-grown nc-Si samples that show luminescence in the

Fig. 5. Time-resolved PL traces of sample A7 after annealing at 1100° C for 1, 2, and 3 h.

near-infrared spectrum are studied. The optimum annealing time at a temperature of 1100° C and the N₂O/SiH₄ ratio are 3 h and 4, respectively. The optimum processing substrate temperature is determined to be 100°C according to the substrate-temperature-dependent spectra. As the N₂O/SiH₄ ratio < 4, the size of nc-Si buried in the Si-rich SiO_x film depends on the density of oxygen atoms in the Si-rich SiO_x film, and the low N₂O/SiH₄ ratio causes an imperfect quantum confinement effect in the SiO₂ matrix, resulting in the suppression of the PL radiating from nc-Si. At a $N_2O/$ SiH_4 ratio > 4, the intensity between 700 and 800 nm is much weak because a sufficient amount of oxygen atoms completely reacts with silicon atoms to generate a SiO₂ film, and the amount of excess Si is too low to precipitate nc-Si. The normalized TRPL traces of samples with an optimum N₂O/SiH₄ ratio and an optimum processing substrate temperature, after annealing at 1100° C for 1, 2, and 3 h are 27, 39, and 43 µs, respectively.

Acknowledgement

This work was supported by the National Science Council (NSC) of the Republic of China under grant nos. NSC93-2215-E-009-007, NSC 94-2120-M-009-014, and NSC94-2215-E-009-040. The authors acknowledge the Center for Interdisciplinary Molecular Science for supporting this work.

- 1) L. T. Canham: Appl. Phys. Lett. 57 (1990) 1046.
- L. Pavesi, L. D. Negro, C. Mazzoleni, G. Franzoj and F. Priolo: Nature (London) 408 (2000) 440.
- 3) F. Iacona, G. Franzo and C. Spinella: J. Appl. Phys. 87 (2000) 1295.
- 4) Q. Ye, R. Tsu and E. H. Nicollian: Phys. Rev. B 44 (1991) 1806.
- M. Fujii, S. Hayashi and K. Yamamoto: Jpn. J. Appl. Phys. 30 (1991) 687.
- 6) G.-R. Lin: Jpn. J. Appl. Phys. 41 (2002) L1379.
- 7) G.-R. Lin: J. Appl. Phys. 94 (2003) 7542.
- G.-R. Lin, K.-C. Yu, C.-J. Lin, H.-C. Kuo and M.-C. Ou-Yang: Appl. Phys. Lett. 85 (2004) 1000.
- 9) G.-R. Lin, C.-J. Lin and K.-C. Yu: J. Appl. Phys. 96 (2004) 3025.
- T. Shimizu-Iwayama, N. Kurumado, D. E. Hole and D. E. Townsend: J. Appl. Phys. 83 (1998) 6018.
- M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo and H. A. Atwater: Appl. Phys. Lett. **72** (1998) 2577.
- 12) L. Skuja: J. Non-Cryst. Solids 179 (1994) 51.
- 13) L. B. Ma, A. L. Ji, C. Liu, Y. Q. Wang and Z. X. Cao: J. Vac. Sci. Technol. B 22 (2004) 2654.
- 14) Y. Q. Wang, G. L. Kong, W. D. Chen, H. W. Diao, C. Y. Chen, S. B. Zhang and X. B. Liao: Appl. Phys. Lett. 81 (2002) 4174.
- 15) G.-R. Lin and C.-J. Lin: J. Appl. Phys. 95 (2004) 8484.
- 16) C.-J. Lin and G.-R. Lin: IEEE J. Quantum Electron. 41 (2005) 441.
- 17) G.-R. Lin, C.-J. Lin, C.-K. Lin, L.-J. Chou and Y.-L. Chueh: J. Appl. Phys. 97 (2005) 094306.
- 18) C. Garcia, B. Garrido, P. Pellegrino, R. Ferre, J. A. Moreno, J. R. Morante, L. Pavesi and M. Cazzanelli: Appl. Phys. Lett. 82 (2003) 1595.