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RRKM calculations based on the theoretical BAC-MP4 potential energy data and molecular parameters for 
H(D) + N20 reactions have been carried out by solving master equations which incorporate tunneling effect 
corrections for the H-atom (or D-atom) addition and migration processes. The generalized reaction mechanism 
involves an energetic adduct (HNNOt or DNNOt), which can redissociate back to the reactants, undergo an 
H-atom (or D-atom) migration to form products, or it could be stabilized via collisional deactivation. The 
thermal rate coefficients for the unimolecular decomposition and bimolecular chemical activation according 
to this mechanism were obtained from the numerical solution of master equations based on the Nesbet algorithm, 
microscopic reversibility, and Gaussian elimination, with the weak collision assumption using the exponential- 
down model. The convoluted effect of pressure and tunneling accounts for the observed curvature in the 
Arrhenius plots for the reactions of both H and D atoms. The calculated results are in excellent agreement 
with the experimental data of Marshall et al. (J.  Phys. Chem. 1989, 93, 1922). 

Introduction 

The reaction of H atoms with N2O is relevant not only to the 
H2-N20 flame chemistry but also to the kinetics of NOx 
reduction with NH3* and HNC0,2 in which the NH + NO 
reaction, producing H -t N2O and N2 + OH products, plays a 
significant role in NO r e m ~ v a l . ~ - ~  

The kinetics of the H + N2O reaction have been studied in 
detail by Marshall et a L 6 s 7  including the observation of a 
noticeable kinetic isotope effect at low temperatures.' On the 
basis of the result of a potential energy surface calculation by 
Melius6 with the bond-additivity corrected Moller-Plesset 
fourth-order perturbation (BAC-MP4) m e t h ~ d , ~ , ~  Marshall et al? 
attributed the nonlinear Arrhenius behavior of H-atom decay 
rates observed at lower temperatures (400-700 K) to the effect 
of quantum-mechanical tunneling on the H-atom migration 
process (b), following initial addition to the terminal N atom: 

H + N,O A HNNO+ LL NNOH~ A N, + OH 

The transition states (TSs) for all three steps (a)-(c) have 
been calculated by Melius with the BAC-MP4 method as 
referenced above and, more recently, by Walch'O and Durant' 
in relation to the NH + NO reaction, which, as mentioned above, 
is known to produce H + N20 and N2 + OH via TS (a) and 
TSs (b and c), respectively. These TSs are, therefore, theoreti- 
cally well characterized. 

In the present study, we examine the effects of pressure, 
temperature, and quantum-mechanical tunneling on the lifetime 
of the chemically activated HNNO intermediate formed by the 
initial addition reaction, H + N2O - HNNOI. On account of 
the presence of a relatively large potential well (-15 kcal mol-') 
and the high banier for H-atom migration (- 15 kcal mol-' from 
the reactants), the effect of pressure on the stabilization and 
the tunneling of the excited HNNOt may be significant. To 
our knowledge, the calculation of tunneling probability involving 
partially deactivated excited molecules as a function of pressure 
and temperature has not yet been performed. This calculation 
requires a reliable estimate of the internal energy distribution 
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of the HNNOt molecules at a specific temperature and pressure, 
because tunneling probability depends strongly on the energy 
of the molecules. 

Computation Procedure 

According to the results of previous ab initio calculations,6s8-11 
the reaction of H atom (or D atom) and N2O involves an energy 
barrier of about 9 kcal mol-' to form the vibrationally excited 
intermediate HNNOt (or DNNOt), which undergoes a 1,3- 
hydrogen (or 1,3-deuterium) shift with a barrier (-15 kcal mol-' 
for HNNOt or -14 kcal mol-' for DNNOt) to give a NNOH 
(or "OD) species. The latter is unstable and dissociates into 
N2 + OH (or OD). The reaction coordinate diagram based on 
the BAC-MP4 method is shown in Figure 1, where the numbers 
represent the calculated energies relative to reactants at 0 K 
(isotope results are shown in parentheses). 

The Rice -Ramsperger- Kassel -Marcus (RRKM) calcula- 
tions for the H(D) + N2O reactions were performed by solving 
the master e q u a t i ~ n ' ~ J ~  for the system. The reaction mechanism 
involving multiple vibrational energy transfer for the excited 
intermediate is indicated in the following scheme (for simplicity, 
the similar scheme for D + N20 is not shown here): 

H"0 

where "t" represents internal excitation. Here A H 0  is the 
enthalpy difference between the reactants (H + N20) and the 
intermediate (HNNO) at 0 K, @(E) and @(E) are the microscopic 
rate coefficients at energy E for the unimolecular dissociation 
of the excited intermediate (HNNOt) via channels (a) and (b) 
to form the reactants and the products (N2 + OH), respectively, 
K a ( E  - AHo) is the miqoscopic bimolecular rate coefficient 
for formation of the excited intermediate at energy E from the 
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Figure 1. Energy diagram for the H + NzO reaction based on the 
result of BAC-MP4 calculations including zero-point energie~.~-~ The 
energy values shown in parentheses are for D + NzO reaction. 

reactants, and R(E,E’) is the rate coefficient of energy transfer 
by collision for the excited intermediate with the bath gas (M) 
from E‘ to E. Thus, the master equation for the system is written 
as 

ag(E,t)lat = [MlJ[R(E,E’) g(E’,t) - R(E’,E) g(E,t)] dE’ - 

[P(E) + kb(E)lg(E,t) + k - 7 E  - m o ) f r ( E  - M0) A(t)  BO) 
(1) 

where g(E,t) represents the population of the excited intermedi- 
ate HNNOt with energy E at time t ,  fr(E - A&) is the 
Boltzmann distribution of energies for the reactants H and N20, 
A(t)  and B ( f )  stand for the concentration of the reactants H and 
NzO, respectively, at time t .  To solve eq 1 mathematically, 
the product of k-a(E - A&) and f,(E - A&) would be replaced 
by K,,k”(E) f(E) based on the principle of microscopic revers- 
ibility at equilibrium,13J4 where Kq is the equilibrium constant 
for reactants and intermediate, and f(E) is the thermal distribu- 
tion function of the excited intermediate HNNOt with energy 
E. Thus, by the usual rule of matrix multiplication, eq 1 can 
be simply recast into a discrete form: 

dg(t)/dt = Jg(t) + Keqka(E) f(E) A(t )  B(t)  (2) 

where J is a matrix of microscopic rate coefficients involving 
energy transfers and reactions for HNNOT. The details of the 
solution for eq 2 can be found in the textbook on unimolecular 
reactions by Gilbert and Smith;I5 hence, only a summary is given 
here. 

The total thermal rate coefficient for the H + N20 reaction 
(denoted by ktot) is determined from the addition and decom- 
position channels: 

(3) 

where kadd and kdec are thermal rate coefficients for the reaction 
of H and NzO to form the stable adduct (HNNO) and the final 
products (N2 + OH), respectively. According to the principle 
of microscopic reversibility, kadd can be expressed as 

ktot = kadd + kdec 

(4) 

where fne is the nonequilibrium factor, and kt,,j is the thermal 
rate coefficient for the unimolecular decomposition of HNNO 
back to form the reactants via channel (a). Both fne and ktni 
can be formalized as  follow^:^^-^^ 

where x(E), the nonequilibrium population of HNNOt at energy 
E, can be obtained from the solution of the master equation 
described in eq 1 but without consideration of the bimolecular 
ass~ciation:’~ 

-k,,,,x(E) = oJ[P(E ,E’ )  x(E’) - P(E’,E) x(E)] dE‘ - 
k(E)x(E) (7) 

where ku,,j = k:fi + kk and k(E) = P(E) + kb(E). o is the 
collision frequency of HNNOt with bath gas, P(E,E’) is the 
probability of energy transfer for HNNO colliding with bath 
gas from energy E’ to energy E. Note that P(E,E‘) and R(E,E‘) 
are related by the formula oP(E,E‘) = [M]R(E,E’). 

Equation 7 could be solved by the numerical method based 
on the Nesbet a lg~r i thm,’~*’~  with “exponential-down model” 
used in the probability distribution function. The probability 
for the down transitions has the exponential expression as 
follows: 12,’5 

( E,E’) ,  E 2 E’ ( 8 )  P(E’,E) = - exp - - 1 
NE) 

where N(E) is the normalizing factor, and a, the energy 
independent constant, was reasonably assumed to be 1 kcal 
mol-’ for both HNNOt and DNNOt in all  calculation^.'^ Again, 
the principle of microscopic reversibility has been applied to 
obtain the probability for the up transiti~ns:’~ 

P ( 6 , E )  = P(E,E’) f(E’)/f(E), E < 6 (9) 

To solve the master equation numerically, eq 7 was recast 
into a discrete form: 

-kunjx, = u ~ E ~ v , ~ ~  - Pjp,> - kpr (10) 
J 

where k, = k(E), etc. 
The strong collision model was used as an initial estimate to 

solve eq 10 iteratively. For each iteration, the total thermal 
unimolecular rate coefficient, k,,,,,, can be evaluated according 
to eq 6 with an improved distribution function which was 
obtained from the previous iterative step. The entire procedure 
is then repeated until the calculated value of kulll does not change 
within a desired tolerance. The grain size (6E) used in the 
summation of eq 10 was set to 0.5 kcal, which is sufficiently 
small that the value of k,,, is independent of 6E. The upper 
bound of the summation applied in eq 10 was fixed at 100 kcal 
for all calculations. 

The thermal rate coefficient of formation of Nz + OH from 
H + N20, kda, could be obtained by the distribution average 
of @(E) with the steady-state population of HNNOt, which can 
be acquired from the solution in eq 2: 

where k,, is the steady-state thermal rate coefficient for the 
chemical activation system, which can be formulated as 

where v(E) represents the steady-state distribution function at 
energy E, which could be determined from the equation13-15 
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TABLE 1: Molecular and Transition-State Parameters Used 
in the RRKM Calculat i~n~~~ 

species or 
transition states AEVkcal mol-I la, Ib ,  IJamu vk.elcm-1 
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H(D) + N20 
H+N2O- 

D+N2O - 
HNNO 

H"0 

DNNO 

DNNO 

HNNO - 
DNNO - NZ + OH 

N2 + OD 

0 137.9 615(2), 1244,2351 
9.2 9.7, 147.9, 157.6 1287i, 375,669(2) 
(9.2; 10.38) 1174, 1829 
8.9 

1162, 1816 
- 14.6 
(-14.4; -14.58) 3210 
-16.8 

2346 
15.2 
(16.6: 16.38) 1280, 1769 
14.0 

1255, 1301 

16.9, 156.2, 173.1 999i, 307,611(2) 

13.1, 137.2, 150.3 312,937(2), 1376(2) 

17.5, 141.6, 158.8 300, 901(3), 1428 

30.2, 103.0, 133.2 2427i, 481, 879(2) 

34.8, 103.0, 137.8 1767i, 480,767(2) 

The energies, moments of inertia, and vibrational frequencies given 
for chemical reactions represent those of the transition states involved. 
The values of collision frequency (0) for HNNO (or DNNO) with 
Ar are predicted using the estimated Lennard-Jones parameters: u = 
4 A; E = 150 K. The energy values are relative to those of reactants 
with zero-point energy corrections involved. All vibration frequencies 
of intermediates and transition states have been grouped into four classes 
by geometric average with degeneracy in parentheses. Imaginary 
vibrational frequencies express those of the reaction coordinate involved. 
f G 2  energy by Durant.I' 8 CASSCFKCI energy by Walch.Io 

If the integration form is replaced by a discrete summation 
notation with a small grain size 6E,  eq 13 becomes a set of 
linear simultaneous equations, which can be solved exactly by 
Gaussian elimination.18 Since all the rate coefficients located 
in the last term of eq 11 can be obtained from the solution of 
eq 10 incorporating eqs 4-6, thus kadd, kdec. and k,,, for H(D) + N20 reactions can be calculated for various pressures and 
temperatures by repeating the procedure described above. 

The microscopic rate coefficient is defined as 

Here @(E)  is the density of states for the intermediate at energy 
E, h is Planck's constant, and Wt(E) is the sum of states for 
the transition state at energy E, for i = a or b, with respective 
to TS(a) or TS(b). In the general expression with tunneling 
 correction^,^^^^^ 

$(E) = h E P ( e )  Q*(E - E )  de (15) 

where * represents transition-state quantities, P(E) ,  the one- 
dimensional tunneling probability as a function of the transla- 
tional energy E along the reaction coordinate, can be calculated 
by fitting a generalized Eckart potentialz1 to the potential energy 
surface for this reaction:20s22 

sinh(a) sinh(b) 
P(€)  = (16) 

sinh 2- ( ] + cosh2(c) 

with 

a = 4n(€)1/2(Vo-'/2 + vl- 1/2 ) -1 
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Figure 2. Comparison of RRKM results (curves) with experimental 
data (points) of Marshall et al. for (A) H + N2O and (B) D + N20, 
respectively. Solid and dashed curves are the results of RRKM 
calculations at 200 Torr with and without tunneling corrections, 
respectively, and the calculated total rate coefficients represented by 
bold curves. 

where Y* is the magnitude of the imaginary frequency related 
to TS(a) or TS(b), VO and VI are respectively the barrier height 
of the corresponding TS (a or b) relative to intermediate and 
reactants [via TS(a)] or products [via TS(b)]. Note that in the 
case where VO is greater than V I ,  the intermediate cannot get 
any chance to tunnel through the barrier with energy E lower 
than (VO - VI). Therefore, the calculation procedure for the 
integration in eq 15 is done by summing over the product of 
P ( E )  and @*(E - E )  with a small grain size de, with (VO - VI) 
instead of 0 as an initial summation step if VO > VI. 

The density of states for all of the intermediates and TSs are 
obtained from the f is t  derivative of the corresponding functions 
of sum of states, which can be determined by polynomial curve 
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Figure 3. Arrhenius plots of total rate coefficients at various pressures 
for (A) H + N2O and (B) D + N20. The pressures are expressed as 
(- - -) 20 Torr; (- - -) 200 Torr; (- * -) 1 atm; e**)  10 atm; (-) 
infinity. 

fitting (n = 4-7, typically) of the results calculated by the direct 
counting method with vibrational frequencies geometrically 
averaged into four groups (shown as last column of Table 1) if 
total energy E 5 30 kcal (or by the analytical method of Whitten 
and Rab in~v i t ch~~  if E > 30 kcal). 

Table 1 lists the BAC-MP4 parameters of the reactants, 
intermediates, and TSs used in the RRKM calculations for both 
H + N20 and D + N20 reactions. The energies calculated by 
the complete active space self-consistent fieldinternally con- 
tracted configuration interaction (CASSCFKCI) methodlo and 
those optimized at the Gaussian-2 (G2) levelll are included in 
parentheses for comparison. They are in good agreement. 
However, no isotope results were provided except the ones with 
the BAC-MP4 method. 

Results and Discussion 

A comparison of total rate coefficients between experiment 
and theory is shown in Figure 2A,B for the reactions H + N20 
and D + N20, respectively. All the points (0 for H 4- N20; A 
for D + N20) are the experimental data obtained from the flash- 
photolysis experiment by Marshall et al.' Solid and dashed 
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Figure 4. Plots of tunneling effect at various pressures as indicated, 
for (A) H + N20 and (B) D + N20,  respectively. kmn and k,, are the 
total rate coefficients with and without tunneling corrections, respec- 
tively. 

curves are the results of RRKh4 calculations at 200 Torr with 
and without tunneling corrections, respectively, in both Figure 
2A,B. kadd (or K&d without tunneling corrections) is the addition 
rate coefficient for H(D) f N20 forming the HNNO (DNNO) 
intermediate, and kdec (or k'dec without tunneling corrections) is 
the decomposition rate coefficient for N2 and OH(0D) produc- 
tion. Thus, the total rate constant (shown as bold curves in 
both figures) is equal to the sum of kadd and kdec. The excellent 
agreement between experiment and theory strongly indicates 
that not only tunneling effect but also the stabilization of the 
HNNOt (DNNOt) intermediate have significant contributions 
to the overall rate coefficient. At low temperatures (T  < 700 
K), the contribution from the H(D) + N20 addition process 
becomes significant; in this process, H (or to a lesser extent D) 
atoms may tunnel through the barrier in step (a) and form a 
stable intermediate, HNNO (or DNNO) by collisional stabiliza- 
tion. Thus, the influence of pressure on the addition-stabilization 
process is also important vis-&vis the overall tunneling effects 
on the total rate coefficient. The effect of pressure has also 
been qualitatively reported by Bozzelli et al.24 through a 
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TABLE 2: Calculated Rate Coefficients for Addition and Decomposition Channels of H + N2O Reaction with Ar as Buffer 
G a F C  

20 200 760 7600 m 

T add dec add dec add dec add dec add 
300 5.55(-18) 7.89(-19) 1.08(-17) 3.76(-19) 1.48(-17) 2.30(-19) 2.24(-17) 8.92(-20) 2.94(-17) 
500 9.36(- 17) 1.67(- 16) 3.75(- 16) 1.50(-16) 7.58(- 16) 1.39(- 16) 2.46(- 15) 1.14(- 16) 1.01(- 14) 

1000 2.02(-16) 8.43(-14) 1.50(-15) 8.43(-14) 4.53(-15) 8.42(-14) 2.82(-14) 8.39(-14) 1.68(-12) 
1500 9.96(-17) 1.11(-12) 8.98(-16) 1.11(-12) 3.05(-15) 1.11(-12) 2.39(-14) 1.11(-12) 1.13(-11) 
2000 4.48(- 17) 4.48( -12) 4.44( -16) 4.48(-12) 1.60(- 15) 4.48( - 12) 1.38(- 14) 4.48( -12) 3.18(- 11) 
3000 1.08(-17) 2.00(-11) 1.18(-16) 2.00(-11) 4.49(-16) 2.00(-11) 4.31(-15) 2.00(-11) 1.01(-10) 

Channels add and dec represent the reaction of H + Nz0 to form HNNO and NZ + OH, respectively. 
a Rate coefficients are in units of cm3 s-I, pressures in Torr, and temperatures in kelvin. The values in parentheses represent powers of 10. 

TABLE 3: Calculated Rate Coefficients for Addition and Decomposition Channels of D + NzO Reaction with Ar as Buffer 
Ga@-' 

20 200 760 

T add dec 
300 1.44(-18) d 
500 5.07(-17) 6.60(-17) 

loo0 1.67(-16) 6.41(-14) 
1500 1.25(-16) 8.52(-13) 
2000 1.15(-16) 3.39(-12) 
3000 2.98(-17) 1.50(-11) 

add dec 
3.33(-18) d 
2.18(- 16) 6.46(- 17) 
1.26(- 15) 6.41(- 14) 
1.06(- 15) 8.52(- 13) 
1.05( - 15) 3.39( - 12) 
2.95(-16) 1 SO(- 11) 

add dec 
5.07(-18) d 
4.86(- 16) 6.32(- 17) 
3.69(-15) 6.41(- 14) 
3.61(-15) 8.52(-13) 
3.70( - 15) 3.39( - 12) 
1.10(-15) 1.50(-11) 

7600 

add dec 

8.78(-18) d 
1.66(- 15) 5.83( - 17) 
2.58(- 14) 6.40(-14) 
2.86(- 14) 8.52(- 13) 
3.04( - 14) 3.39( - 12) 
1.01(-14) 1.50(- 11) 

m 

add 
1.21(-17) 
6.20( - 15) 
1.16(-12) 
8.08(- 12) 
2.33(-11) 
7.54(-11) 

a Rate coefficients are in units of cm3 s-l, pressures in Torr, and temperatures in kelvin. The values in parentheses represent powers of 10. 
Channels add and dec represent the reaction of D + NzO to form DNNO and NZ + OD, respectively. Negligible values. 
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Figure 5. Plot of isotope effect at various pressures as indicated. The 
result of high-pressure limit (corresponding to the additiodstabilization 
process forming HNNO) is shown as a dotted curve. k~ and k~ are the 
total rate coefficients for H + NzO and D + N20, respectively. 

calculation with the quantum Rice-Ramsperger-Kassel (QRRK) 
method, without tunneling corrections. 

According to the experimental results of Marshall et al.,6*' 
no pressure dependence was observed with the pressure varied 
typically by a factor of 4 (-100-400 Torr for T < 700 K). 
Hence contribution from both addition channels was ruled out 
from their qualitative QRRK6 or RRKM7 calculations. A search 
of the literature indicates that no attempt has been made to 
calculate the reaction rates by incorporating tunneling corrections 
for channel (a) in both systems. If we check the magnitude of 
Y* of channel (a) for both H + N20 and D + NzO reactions 
from Table 1, the noticeably high values (12871' cm-I for 
HNNO'; 9991' cm-I for DNNO*) imply a necessity for tunneling 
corrections. 

The pressure effects are shown in Figure 3A,B, which 
summarize the calculated total reaction rate coefficients at 

various pressures for H + N20 and D + N20, respectively. 
Since the additiodstabilization channels are dominant at low 
temperatures, they give rise to an evident pressure effect for 
both reactions. At high temperatures, the decomposition 
channels become dominant and diminish the pressure depen- 
dence. The higher the pressure is, the more important the 
addition channels are. At the high-pressure limit, the total rate 
coefficients are determined exclusively by addition channels for 
both reactions, shown as solid curves in Figure 3A,B. 

Figure 4A,B show the temperature dependence of the rate 
coefficient ratio with and without tunneling corrections calcu- 
lated at various pressures for H + N20 and D + N20, 
respectively. The tunneling effects are significant in both H(D) 
reactions, especially under low-temperature and low-pressure 
conditions. Without tunneling corrections, the addition reaction 
is approximately in the third-order range at low temperatures 
for both reactions. But when the tunneling effect was included, 
the enormous enhancement in the calculated rate coefficients 
at low pressures changed the reaction order to the intermediate 
range between second and third order. Our results also show 
that the tunneling corrections become more essential when the 
pressure is lower; this will cancel part of the pressure effect 
and make the rate coefficients less pressure dependent. This is 
the reason why the H i- N20 reaction has somewhat less 
pronounced pressure effect than D + N20, as shown in Figure 
3A,B. No such intricate P effect was observed experimentally6.' 
because of the narrow pressure range employed. 

The overall kinetic isotope effect can also be examined in 
terms of the k&D ratio, plotted in Figure 5 as a function of 
pressure and temperature. The values of the ratio are highly 
pressure and temperature dependent, due primarily to the effect 
of tunneling as also revealed by the results presented in Figure 
4. At lower pressures, P < 10 atm, tunneling through both 
barriers are important, whereas at higher pressures, when all of 
the excited adducts (HNNOt or DNNOI) are collisionally 
deactivated, only the effect of tunneling through the first barrier 
affects the kH/kD ratio, as indicated by the dotted curve in Figure 
5 .  

The selected RRKM results of H i- N20 and D + N20 for 
both addition and decomposition channels are tabulated in Table 
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2 and 3, respectively, for P(Ar)/Torr = 20, 200, 760, 7600, 
and 00 at six temperatures between 300 and 3000 K. For the 
convenience of kinetic modeling, we provide the analytical 
equations obtained from the least-squares fitting of our results 
at 760 Torr for the temperature range of 300-3000 K: 

both expressed in units of cm3 s-l. 

Conclusions 

The rate coefficients for the H(D) + N20 reactions, including 
both addition and decomposition channels, have been calculated 
over a wide range of conditions with the numerical solution of 
master equations15 based on the RRKM theory with tunneling 
corrections using the thermochemical data computed by the 
BAC-MP4 method. The generalized Eckart potential was 
introduced to calculate the one-dimensional tunneling probability 
along the reaction coordinate. 19-22 The calculated results agree 
with the experimental data of Marshall et al.' over the 
temperature range 400-1300 K. 

At low temperatures ( T  < 700 K ) ,  the reactions are dominated 
by the pressure-dependent addition-stabilization process with 
noticeable tunneling effect through barrier (a) to produce the 
stable intermediate (HNNO or DNNO). However, our results 
show that the tunneling effect makes the rate coefficients less 
pressure dependent, which explains the difficulty in observing 
the effect of pressure experimentally. At temperatures '700 
K, the decomposition channel becomes dominant, while the 
formation of H"O(DNN0) by collisional deactivation as well 
as the effect of tunneling through barrier (b) diminish rapidly 
with increasing temperature. The overall kinetic isotope effect 
has also been examined by the ratio of kHlkD, which exhibits 
strong PIT dependencies, due to the effects of collisional 
deactivation and quantum-mechanical tunneling. 
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